Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Magn Reson ; 364: 107708, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38901173

RESUMO

Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear 13C13C and heteronuclear 1H15N, 1H13C and 15N13C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3-4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of 1H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.

2.
Annu Rev Biophys ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346243

RESUMO

Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies. Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

4.
Curr Opin Struct Biol ; 82: 102660, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536064

RESUMO

Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) is establishing itself as a powerful method for the characterization of protein dynamics at the atomic scale. We discuss here how R1ρ MAS relaxation dispersion NMR can explore microsecond-to-millisecond motions. Progress in instrumentation, isotope labeling, and pulse sequence design has paved the way for quantitative analyses of even rare structural fluctuations. In addition to isotropic chemical-shift fluctuations exploited in solution-state NMR relaxation dispersion experiments, MAS NMR has a wider arsenal of observables, allowing to see motions even if the exchanging states do not differ in their chemical shifts. We demonstrate the potential of the technique for probing motions in challenging large enzymes, membrane proteins, and protein assemblies.


Assuntos
Proteínas de Membrana , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética , Movimento (Física)
5.
J Am Chem Soc ; 145(19): 10700-10711, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140345

RESUMO

Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive µs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.


Assuntos
Peróxido de Hidrogênio , Peroxirredoxinas , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxirredução , Peróxido de Hidrogênio/metabolismo , Conformação Molecular , Dissulfetos/química
6.
Nature ; 618(7967): 1065-1071, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198476

RESUMO

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.


Assuntos
Moléculas de Adesão Celular Neuronais , Morte Celular , Membrana Celular , Fatores de Crescimento Neural , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/ultraestrutura , Mutagênese Sítio-Dirigida , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo
7.
Angew Chem Int Ed Engl ; 62(19): e202219314, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738230

RESUMO

Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein-protein interactions. We studied aromatic residues in the two structurally homologous cross-ß amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of "breathing motions" over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-ß architecture.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Espectroscopia de Ressonância Magnética , Conformação Proteica , Peptídeos beta-Amiloides/metabolismo
8.
J Struct Biol X ; 7: 100079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578472

RESUMO

Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.

10.
Nat Commun ; 13(1): 1927, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395851

RESUMO

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.


Assuntos
Aminopeptidases , Simulação de Dinâmica Molecular , Aminopeptidases/metabolismo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Peptídeos
11.
Front Mol Biosci ; 8: 762005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760928

RESUMO

Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.

12.
Structure ; 29(9): 1065-1073.e4, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33974880

RESUMO

Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355130

RESUMO

Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.


Assuntos
Membranas Mitocondriais , Chaperonas Moleculares , Humanos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/química , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
BMC Biol ; 18(1): 2, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907035

RESUMO

BACKGROUND: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
15.
Magn Reson (Gott) ; 1(2): 331-345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37904819

RESUMO

We introduce ssNMRlib, a comprehensive suite of pulse sequences and jython scripts for user-friendly solid-state nuclear magnetic resonance (NMR) data acquisition, parameter optimization and storage on Bruker spectrometers. ssNMRlib allows the straightforward setup of even highly complex multi-dimensional solid-state NMR experiments with a few clicks from an intuitive graphical interface directly from the Bruker Topspin acquisition software. ssNMRlib allows the setup of experiments in a magnetic-field-independent manner and thus facilitates the workflow in a multi-spectrometer setting with a centralized library. Safety checks furthermore assist the user in experiment setup. Currently hosting more than 140 1D to 4D experiments, primarily for biomolecular solid-state NMR, the library can be easily customized and new experiments are readily added as new templates. ssNMRlib is part of the previously introduced NMRlib library, which comprises many solution-NMR pulse sequences and macros.

16.
Sci Adv ; 5(9): eaaw3818, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517045

RESUMO

Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.


Assuntos
Proteínas de Bactérias , Endopeptidase Clp , Inibidores de Proteases/química , Thermus thermophilus/enzimologia , Regulação Alostérica , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química
18.
J Am Chem Soc ; 141(28): 11183-11195, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31199882

RESUMO

Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.


Assuntos
Aminopeptidases/química , Ressonância Magnética Nuclear Biomolecular , Termodinâmica , Aminopeptidases/metabolismo , Isótopos de Carbono , Conformação Proteica , Prótons , Pyrococcus horikoshii/enzimologia
20.
Nat Commun ; 10(1): 2697, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217444

RESUMO

Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available.


Assuntos
Complexos Multienzimáticos/ultraestrutura , Estrutura Quaternária de Proteína , Aminopeptidases/química , Aminopeptidases/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Peso Molecular , Complexos Multienzimáticos/química , Pyrococcus horikoshii
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA