RESUMO
Cell-to-cell communication via tunneling nanotubes (TNTs) is a challenging topic with a growing interest. In this work, we proposed several innovative tools that use red/near-infrared dye labeling and employ lifetime-based imaging strategies to investigate the dynamics of TNTs in a living mesothelial H28 cell line that exhibits spontaneously TNT1 and TNT2 subtypes. Thanks to a fluorescence lifetime imaging microscopy module being integrated into confocal microscopy and stimulated emission depletion nanoscopy, we applied lifetime imaging, lifetime dye unmixing, and lifetime denoising techniques to perform multiplexing experiments and time-lapses of tens of minutes, revealing therefore structural and functional characteristics of living TNTs that were preserved from light exposure. In these conditions, vesicle-like structures, and tubular- and round-shaped mitochondria were identified within living TNT1. In addition, mitochondrial dynamic studies revealed linear and stepwise mitochondrial migrations, bidirectional movements, transient backtracking, and fission events in TNT1. Transfer of Nile Red-positive puncta via both TNT1 and TNT2 was also detected between living H28 cells.
Assuntos
Estruturas da Membrana Celular , Microscopia Confocal , Mitocôndrias , Nanotubos , Nanotubos/química , Humanos , Microscopia Confocal/métodos , Mitocôndrias/metabolismo , Linhagem Celular , Comunicação Celular , Microscopia de Fluorescência/métodos , Dinâmica MitocondrialRESUMO
Free-Living Amebae (FLA) and Cryptosporidium oocysts occasionally share the same environment. From 2004 to 2016, Cryptosporidium was responsible for 60% of 905 worldwide waterborne outbreaks caused by protozoan parasites. The aim of this study was to evaluate interactions between C. parvum oocysts and two common FLAs (Acanthamoeba castellanii and Vermamoeba vermiformis) in a water environment. Encystment and survival of FLAs were evaluated by microscopy using trypan blue vital coloration. Oocysts were numerated on microscopy. Interactions were studied over time in conditions both unfavorable and favorable to phagocytosis. Potential phagocytosis was directly evaluated by several microscopic approaches and indirectly by numeration of microorganisms and oocyst infectivity evaluation. Occasional phagocytosis of C. parvum by FLAs was documented. However, oocyst concentrations did not decrease significantly, suggesting resistance of oocysts to phagocytosis. A temporary decrease of oocyst infectivity was observed in the presence of A. castellanii. The effect of these interactions on C. parvum infectivity is particularly interesting. The biofilm condition could favor the persistence or even the proliferation of oocysts over time. This study demonstrated interactions between C. parvum and FLAs. Further knowledge of the mechanisms involved in the decrease of oocyst infectivity in the presence of A. castellanii could facilitate the development of new therapeutic approaches.
Title: Interactions entre amibes libres et Cryptosporidium parvum : étude expérimentale. Abstract: Les amibes libres et les oocystes de Cryptosporidium partagent parfois le même environnement. Entre 2004 et 2016, Cryptosporidium a été responsable de 60 % des 905 épidémies d'origine hydrique dans le monde causées par des parasites protozoaires. Le but de cette étude était d'évaluer les interactions entre les oocystes de C. parvum et deux espèces d'amibes libres communes (Acanthamoeba castellanii et Vermamoeba vermiformis) en environnement aquatique. L'enkystement et la survie des amibes libres ont été évalués par microscopie en utilisant une coloration vitale au bleu trypan. Les oocystes ont été comptés au microscope. Les interactions ont été étudiées au cours du temps dans des conditions à la fois défavorables et favorables à la phagocytose. La phagocytose potentielle a été évaluée directement par plusieurs approches microscopiques et indirectement par la numération des micro-organismes et l'évaluation de l'infectiosité des oocystes. Une phagocytose occasionnelle de C. parvum par amibes libre a été documentée. Cependant, les concentrations d'oocystes n'ont pas diminué de manière significative, ce qui suggère une résistance des oocystes à la phagocytose. Une diminution temporaire de l'infectivité des oocystes a été observée en présence d'A. castellanii. L'effet de ces interactions sur l'infectiosité de C. parvum est particulièrement intéressant. La condition biofilm pourrait favoriser la persistance ou même la prolifération des oocystes de C. parvum au fil du temps. Cette étude a démontré des interactions entre C. parvum et amibes libres. Une meilleure connaissance des mécanismes impliqués dans la diminution de l'infectiosité des oocystes en présence d'A. castellanii pourrait faciliter le développement de nouvelles approches thérapeutiques.
Assuntos
Amoeba , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Surtos de Doenças , OocistosRESUMO
AIMS: Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphangiogenesis in non-ischaemic cardiomyopathy following pressure-overload remains to be determined. Here, we investigated cardiac lymphangiogenesis following transversal aortic constriction (TAC) in C57Bl/6 and Balb/c mice, and in end-stage HF patients. METHODS AND RESULTS: Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, oedema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice. We found that VEGFR3-signalling was essential to prevent cardiac lymphatic rarefaction after TAC in C57Bl/6 mice. While anti-VEGFR3-induced lymphatic rarefaction did not significantly aggravate myocardial oedema post-TAC, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, whereas inhibition of lymphangiogenesis did not aggravate interstitial fibrosis, it increased perivascular fibrosis and accelerated development of left ventricular (LV) dilation and dysfunction. In clinical HF samples, cardiac lymphatic density tended to increase, although lymphatic sizes decreased, notably in patients with dilated cardiomyopathy. Similarly, comparing C57Bl/6 and Balb/c mice, lymphatic remodelling post-TAC was linked to LV dilation rather than to hypertrophy. The striking lymphangiogenesis in Balb/c was associated with reduced cardiac levels of macrophages, B cells, and perivascular fibrosis at 8 weeks post-TAC, as compared with C57Bl/6 mice that displayed weak lymphangiogenesis. Surprisingly, however, it did not suffice to resolve myocardial oedema, nor prevent HF development. CONCLUSIONS: We demonstrate for the first time that endogenous lymphangiogenesis limits TAC-induced cardiac inflammation and perivascular fibrosis, delaying HF development in C57Bl/6 but not in Balb/c mice. While the functional impact of lymphatic remodelling remains to be determined in HF patients, our findings suggest that under settings of pressure-overload poor cardiac lymphangiogenesis may accelerate HF development.
Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Camundongos , Animais , Linfangiogênese , Coração , Insuficiência Cardíaca/metabolismo , Edema , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Remodelação VentricularRESUMO
Although there is a need to demonstrate reproducibility in light microscopy acquisitions, the lack of standardized guidelines monitoring microscope health status over time has so far impaired the widespread use of quality control (QC) measurements. As scientists from 10 imaging core facilities who encounter various types of projects, we provide affordable hardware and open source software tools, rigorous protocols, and define reference values to assess QC metrics for the most common fluorescence light microscopy modalities. Seven protocols specify metrics on the microscope resolution, field illumination flatness, chromatic aberrations, illumination power stability, stage drift, positioning repeatability, and spatial-temporal noise of camera sensors. We designed the MetroloJ_QC ImageJ/Fiji Java plugin to incorporate the metrics and automate analysis. Measurements allow us to propose an extensive characterization of the QC procedures that can be used by any seasoned microscope user, from research biologists with a specialized interest in fluorescence light microscopy through to core facility staff, to ensure reproducible and quantifiable microscopy results.
Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Reprodutibilidade dos Testes , SoftwareRESUMO
Introduction: We studied the distribution and in vitro pathogenicity of anti-DSG3 IgG subclasses during the course of pemphigus vulgaris (PV). Methods: We longitudinally studied the distribution of anti-DSG3 IgG subclasses (before versus after treatment) in sera from PV patients, using an addressable-laser bead immunoassay (ALBIA). The in vitro pathogenicity of corresponding sera was tested using keratinocyte dissociation and immunofluorescence assays. Results: Sixty-five sera were assessed at baseline (33 from patients treated with rituximab and 32 with corticosteroids). Sixty-three percent of these baseline sera contained 2 or more anti-DSG3 IgG subclasses versus 35.7% of sera from patients in complete remission (CR) and 75.0% of sera from patients with persistent disease activity after treatment. IgG4 was the most frequently detected anti-DSG3 IgG subclass, both in patients with disease activity and in those in CR. The presence of three or more anti-DSG3 IgG subclasses was predictive of relapse, in particular when it included IgG3, with a positive predictive value of 62.5% and a negative predictive value of 92%. While anti-DSG3 IgG4 Abs from sera collected before treatment were most often pathogenic, anti-DSG3 IgG4 from sera collected after treatment were pathogenic only after adjusting their titer to the one measured before treatment. The IgG3 fraction containing anti-DSG3 Abs also had an in vitro pathogenic effect. The disappearance of the pathogenic effect of some sera after removal of anti-DSG3 IgG3 suggested an additional effect of this IgG subclass. Conclusion: The serum levels and number of anti-DSG3 IgG subclasses drive the pathogenic effect of pemphigus sera and may predict the occurrence of relapses.
Assuntos
Pênfigo , Autoanticorpos , Desmogleína 3 , Humanos , Imunoglobulina G , Pênfigo/tratamento farmacológico , Pênfigo/patologia , Recidiva , Rituximab/uso terapêuticoRESUMO
Pemphigus vulgaris is an autoimmune disease that occurs due to pathogenic autoantibodies that recognize the following epidermal adhesion proteins: desmogleins. Systemic corticosteroids usually decrease the titers of anti-desmoglein autoantibodies and improve patients' conditions. Since modifications of IgG N-glycosylation have been described in some autoimmune diseases, we hypothesized that changes in the pathogenic activity of pemphigus IgG could be related to changes in their N-glycosylation profile. The purpose of this study was to assess, longitudinally, the pathogenicity of pemphigus serum IgG and their N-glycosylation profile during phases of disease activity and clinical remission. The pathogenic activity of serum IgG was measured in vitro on immortalized keratinocytes, by immunofluorescence and dissociation assays, and IgG N-glycans were analyzed by mass spectrometry. We showed (i) a correlation between pemphigus clinical activity and the pathogenicity of serum IgG at baseline and at month 6, while the persistence of the in vitro pathogenic activity of IgG during its evolution, even in patients in clinical remission, seemed to be predictive of relapse; (ii) that modifications of the N-glycan structure were altered the in vitro pathogenicity of patients' autoantibodies; (iii) that the pathogenic properties of pemphigus IgG did not appear to be related to the disparity in IgG N-glycans during the course of pemphigus.
RESUMO
Fluorescence microscopy is essential for a detailed understanding of cellular processes; however, live-cell preservation during imaging is a matter of debate. In this study, we proposed a guide to optimize advanced light microscopy approaches by reducing light exposure through fluorescence lifetime (τ) exploitation of red/near-infrared dyes. Firstly, we characterized key instrumental elements which revealed that red/near-infrared laser lines with an 86x (Numerical Aperture (NA) = 1.2, water immersion) objective allowed high transmission of fluorescence signals, low irradiance and super-resolution. As a combination of two technologies, i.e., vacuum tubes (e.g., photomultiplier) and semiconductor microelectronics (e.g., avalanche photodiode), type S, X and R of hybrid detectors (HyD-S, HyD-X and HyD-R) were particularly adapted for red/near-infrared photon counting and τ separation. Secondly, we tested and compared lifetime-based imaging including coarse τ separation for confocal microscopy, fitting and phasor plot analysis for fluorescence lifetime microscopy (FLIM), and lifetimes weighting for enhanced stimulated emission depletion (STED) nanoscopy, in light of red/near-infrared multiplexing. Mainly, we showed that the choice of appropriate imaging approach may depend on fluorochrome number, together with their spectral/lifetime characteristics and STED compatibility. Photon-counting mode and sensitivity of HyDs together with phasor plot analysis of fluorescence lifetimes enabled the flexible and fast imaging of multi-labeled living H28 cells. Therefore, a combination of red/near-infrared dyes labeling with lifetime-based strategies offers new perspectives for live-cell imaging by enhancing sample preservation through acquisition time and light exposure reduction.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Fluoresceína/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Microscopia Confocal/instrumentação , Fótons , Rodaminas/químicaRESUMO
Cognitive side effects after cancer treatment threatening quality of life (QoL) constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are examples of next-generation therapy (NGT) administered to metastatic castration-resistant prostate cancer (mCRPC) patients. NGT significantly improved mCRPC overall survival but neurological side effects such as fatigue and cognitive impairment were reported. We developed a behavioral 17 months-aged and castrated mouse model receiving per os AAP or ENZ for 5 days per week for six consecutive weeks. ENZ exposure reduced spontaneous activity and exploratory behavior associated with a decreased tyrosine hydroxylase (TH)-dopaminergic activity in the substantia nigra pars compacta and the ventral tegmental area. A decrease in TH+-DA afferent fibers and Phospho-DARPP32-related dopaminergic neuronal activities in the striatum and the ventral hippocampus highlighted ENZ-induced dopaminergic regulation within the nigrostriatal and mesolimbocortical pathways. ENZ and AAP treatments did not substantially modify spatial learning and memory performances, but ENZ led to a thygmotaxis behavior impacting the cognitive score, and reduced c-fos-related activity of NeuN+-neurons in the dorsal hippocampus. The consequences of the mCRPC treatment ENZ on aged castrated mouse motivation to exploration and cognition should make reconsider management strategy of elderly prostate cancer patients.
RESUMO
Described herein is a quinoxalinone-based photoaffinity probe with caged fluorescence properties. Upon visible blue LED irradiation (λmax 450 nm), this photo-crosslinker is able to covalently capture proteins with concomitant fluorescence labelling. This process enables monitoring applications under "no wash" conditions.
RESUMO
The diatom Phaeodactylum tricornutum is a marine unicellular microalga that exists under three main morphotypes: oval, fusiform, and triradiate. Previous works have demonstrated that the oval morphotype of P. tricornutum Pt3 strain presents specific metabolic features. Here, we compared the cellular organization of the main morphotypes of the diatom P. tricornutum Pt3 strain through transmission electron and advanced light microscopies. The three morphotypes share similarities including spectral characteristics of the plastid, the location of the nucleus, the organization of mitochondria around the plastid as well as the existence of both a F-actin cortex, and an intracellular network of F-actin. In contrast, compared to fusiform and triradiate cells, oval cells spontaneously release proteins more rapidly. In addition, comparison of whole transcriptomes of oval versus fusiform or triradiate cells revealed numerous differential expression of positive and negative regulators belonging to the complex dynamic secretory machinery. This study highlights the specificities occurring within the oval morphotype underlying that the oval cells secrete proteins more rapidly.
RESUMO
Immunohistochemical analysis is a routine procedure for clinical and research studies in male fertility. However, most of the interpretations remain subjective and time-consuming, with inherent intra- and inter-observer variability. Given the prognostic and research implications of testicular assessment, a more objective and less time-consuming method is required. In the current study, we used in vitro matured pre-pubertal murine testes as a model. The main objective was to develop an affordable automated digital immunohistochemistry image analysis tool for an unbiased and quantitative assessment of testicular tissue sections. Testicular explants were fixed, cut, and stained for specific germ cell markers. The classical manual counting procedure was evaluated. Background and noise were reduced on brightfield images. Photomicrographs were stitched (Background_Elimination_Stitching) to create high-quality images. Two procedures were evaluated (IHC_Tool and Stained_Nuclear_Area); then a procedure (Necrotic_Area_Elimination) allowing withdrawal of the necrotic area observed after culture was assessed. Finally, the number of stained nuclei in the unaltered tissue area was extracted. The automated IHC_Tool procedure with images saved as TIFF at a ×200 magnification allowed the most rigorous cell quantification. IHC_Tool developed for testicular sample analysis can be used for various types of tissues. We foresee that this method will minimize inter-observer variations across laboratories and will be helpful for clinical trials and translational initiatives.
Assuntos
Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Testículo/fisiologia , Técnicas de Cultura de Tecidos/métodos , Animais , Masculino , CamundongosRESUMO
Conventional antibiotic treatment is in most cases insufficient to eradicate biofilm-related infections, resulting in high risk of treatment failure and recurrent infections. Recent studies have shown that novel methods of antibiotic delivery can improve clinical outcomes and reduce the emergence of antibiotic resistance. The objectives of this work were to develop and evaluate a targeting nanocarrier system that enables effective delivery of antimicrobial drugs to Staphylococcus aureus, a commonly virulent human pathogen. For this purpose, we first prepared a formulation of polymeric nanoparticles (NPs) suitable for encapsulation and sustained release of antibiotics. A specific antibody against S. aureus was used as a targeting ligand and was covalently immobilized onto the surface of nanoparticulate materials. It was demonstrated that the targeting NPs preferentially bound S. aureus cells and presented an elevated accumulation in the S. aureus biofilm. Compared to free-form antibiotic, the antibiotic-loaded targeting NPs significantly enhanced in vitro bactericidal activity against S. aureus both in planktonic and biofilm forms. Using a mouse infection model, we observed improved therapeutic efficacy of these antibiotic-loaded NPs after a single intravenous administration. Taken together, our studies show that the targeting nanoparticulate system could be a promising strategy to enhance the biodistribution of antibiotics and thereby improve their efficacy.
Assuntos
Antibacterianos , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Distribuição TecidualRESUMO
Root border cells (BCs) and their associated secretions form a protective structure termed the root extracellular trap (RET) that plays a major role in root interactions with soil borne microorganisms. In this study, we investigated the release and morphology of BCs of Glycine max using light and cryo-scanning electron microscopy (SEM). We also examined the occurrence of cell-wall glycomolecules in BCs and secreted mucilage using immunofluorescence microscopy in conjunction with anti-glycan antibodies. Our data show that root tips released three populations of BCs defined as spherical, intermediate and elongated cells. The mechanism of shedding seemed to be cell morphotype-specific. The data also show that mucilage contained pectin, cellulose, extracellular DNA, histones and two hemicellulosic polysaccharides, xyloglucan and heteromannan. The latter has never been reported previously in any plant root secretions. Both hemicellulosic polysaccharides formed a dense fibrillary network embedding BCs and holding them together within the mucilage. Finally, we investigated the effect of the RET on the interactions of root with the pathogenic oomycete Phytophthora parasitica early during infection. Our findings reveal that the RET prevented zoospores from colonizing root tips by blocking their entry into root tissues and inducing their lysis.
Assuntos
Parede Celular/fisiologia , Glycine max/química , Glicina/química , Phytophthora/química , HumanosRESUMO
By allowing insured communication between cancer cells themselves and with the neighboring stromal cells, tunneling nanotubes (TNTs) are involved in the multistep process of cancer development from tumorigenesis to the treatment resistance. However, despite their critical role in the biology of cancer, the study of the TNTs has been announced challenging due to not only the absence of a specific biomarker but also the fragile and transitory nature of their structure and the fact that they are hovering freely above the substratum. Here, we proposed to review guidelines to follow for studying the structure and functionality of TNTs in tumoral neuroendocrine cells (PC12) and nontumorigenic human bronchial epithelial cells (HBEC-3, H28). In particular, we reported how crucial is it (i) to consider the culture conditions (culture surface, cell density), (ii) to visualize the formation of TNTs in living cells (mechanisms of formation, 3D representation), and (iii) to identify the cytoskeleton components and the associated elements (categories, origin, tip, and formation/transport) in the TNTs. We also focused on the input of high-resolution cell imaging approaches including Stimulated Emission Depletion (STED) nanoscopy, Transmitted and Scanning Electron Microscopies (TEM and SEM). In addition, we underlined the important role of the organelles in the mechanisms of TNT formation and transfer between the cancer cells. Finally, new biological models for the identification of the TNTs between cancer cells and stromal cells (liquid air interface, ex vivo, in vivo) and the clinical considerations will also be discussed.
Assuntos
Comunicação Celular , Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microtúbulos , Neoplasias , Animais , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neoplasias/metabolismo , Neoplasias/ultraestrutura , Células PC12 , RatosRESUMO
OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Terapia Genética , Linfangiogênese , Vasos Linfáticos/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Interferon gama/metabolismo , Vasos Linfáticos/imunologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Ratos Wistar , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Função Ventricular EsquerdaRESUMO
The copper-catalyzed alkyne-azide cycloaddition (CuAAC) is one of the most powerful chemical strategies for selective fluorescent labeling of biomolecules in in vitro or biological systems. In order to accelerate the ligation process and ensure efficient formation of conjugates under diluted conditions, external copper(I) ligands or sophisticated copper(I)-chelating azides are used. This latter strategy, however, increases the bulkiness of the triazole linkage, thus perturbing the biological function or dynamic behavior of the conjugates. In a proof-of-concept study, we investigated the use of an extremely compact fluorophore-based copper(I) chelating azide in order to accelerate the CuAAC with concomitant fluorescence labeling; in our strategy, the fluorophore is able to complex copper(I) species while retaining its photophysical properties. It is believed that this unprecedented approach which was applied for the labeling of a short peptide molecule and the fluorescent labeling of live cells, could be extended to other families of nitrogen-based fluorophores in order to tune both the reaction rate and photophysical characteristics.
Assuntos
Química Click/métodos , Cobre/química , Corantes Fluorescentes/química , Animais , Azidas/química , Quelantes/química , Fluorescência , Cinética , Ligantes , Células PC12 , RatosRESUMO
Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA-binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD-generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding.
Assuntos
Cromogranina A/metabolismo , Complexo de Golgi/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/fisiologia , Vesículas Secretórias/fisiologia , Animais , Células COS , Chlorocebus aethiops , Camundongos , Camundongos KnockoutRESUMO
A molecularly imprinted polymer containing a porphyrin unit was developed as a biomimetic heterogenous catalyst for the oxidation of sulfur derivatives. Its catalytic efficiency under mild conditions and its easy recovery represent a great asset for the design of new decontamination tools for yperite and VX.
RESUMO
Epicocconone 1 is a natural chromophore isolated from the fungus Epicoccum nigrum that has shown applications in proteomics and fluorescent microscopy thanks to its unique pro-fluorescence properties. The modification of the skeleton of the natural product by replacing the triene side chain by a fluorenyl scaffold can noticeably increase the fluorophore's absorption coefficient. The synthesis of the analogues of the natural product has been made possible by the use of a palladium-catalyzed carbonylation reaction, allowing the construction of the ß-keto-dioxinone key intermediate. Two-photon absorption cross-section measurements of the fluorenyl epicocconone analogues show a structure dependency with values ranging from 60 to 280â GM and live cell imaging show intense staining of intracellular vesicle-like structures around the nucleus.
Assuntos
Benzopiranos/química , Fluorenos/química , Corantes Fluorescentes/química , Furanos/química , Cetonas/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Benzopiranos/síntese química , Catálise , Fluorenos/síntese química , Corantes Fluorescentes/síntese química , Furanos/síntese química , Cetonas/síntese química , Imagem Óptica/métodos , Células PC12 , Paládio/química , RatosRESUMO
Antiphospholipid antibodies (aPL) promote endothelial dysfunction, inflammation and procoagulant state. We investigated the effect of hydroxychloroquine (HCQ) on prothrombotic state and endothelial function in mice and in human aortic endothelial cells (HAEC). Human aPL were injected to C57BL/6 mice treated or not with HCQ. Vascular endothelial function and eNOS were assessed in isolated mesenteric arteries. Thrombosis was assessed both in vitro by measuring thrombin generation time (TGT) and tissue factor (TF) expression and in vivo by the measurement of the time to occlusion in carotid and the total thrombosis area in mesenteric arteries. TGT, TF, and VCAM1 expression were evaluated in HAEC. aPL increased VCAM-1 expression and reduced endothelium dependent relaxation to acetylcholine. In parallel, aPL shortened the time to occlusion and extended thrombus area in mice. This was associated with an overexpression of TF and an increased TGT in mice and in HAEC. HCQ reduced clot formation as well as TGT, and improved endothelial-dependent relaxations. Finally, HCQ increased the p-eNOS/eNOS ratio. This study provides new evidence that HCQ improves procoagulant status and vascular function in APS by modulating eNOS, leading to an improvement in the production of NO.