Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 830-838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448588

RESUMO

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Assuntos
Pulmão , Reflexo , Respiração , Mecânica Respiratória , Nervo Vago , Animais , Feminino , Masculino , Camundongos , Células Epiteliais/metabolismo , Pulmão/citologia , Pulmão/inervação , Pulmão/fisiologia , Mecanorreceptores/metabolismo , Parvalbuminas/metabolismo , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Nervo Vago/fisiologia , Complacência Pulmonar/fisiologia , Mecânica Respiratória/fisiologia
2.
Nat Commun ; 13(1): 3230, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680919

RESUMO

Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis.


Assuntos
Sinalização do Cálcio , Fagocitose , Canais de Cátion TRPM , Animais , Macrófagos/metabolismo , Camundongos , Fagocitose/fisiologia , Fagossomos/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
3.
Sci Signal ; 13(661)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293462

RESUMO

The thymic development of regulatory T (Treg) cells, crucial suppressors of the responses of effector T (Teff) cells, is governed by the transcription factor FOXP3. Despite the clinical importance of Treg cells, there is a dearth of druggable molecular targets capable of increasing their numbers in vivo. We found that inhibiting the function of the TRPM7 chanzyme (ion channel and enzyme) potentiated the thymic development of Treg cells in mice and led to a substantially higher frequency of functional Treg cells in the periphery. In addition, TRPM7-deficient mice were resistant to T cell-driven hepatitis. Deletion of Trpm7 and inhibition of TRPM7 channel activity by the FDA-approved drug FTY720 increased the sensitivity of T cells to the cytokine interleukin-2 (IL-2) through a positive feed-forward loop involving increased expression of the IL-2 receptor α-subunit and activation of the transcriptional regulator STAT5. Enhanced IL-2 signaling increased the expression of Foxp3 in thymocytes and promoted thymic Treg (tTreg) cell development. Thus, these data indicate that inhibiting TRPM7 activity increases Treg cell numbers, suggesting that it may be a therapeutic target to promote immune tolerance.


Assuntos
Interleucina-2/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Canais de Cátion TRPM/imunologia , Timo/imunologia , Animais , Feminino , Deleção de Genes , Interleucina-2/genética , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Canais de Cátion TRPM/genética , Timo/crescimento & desenvolvimento
4.
Bio Protoc ; 8(14)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30112425

RESUMO

After recognizing extracellular bacterial lipopolysaccharide (LPS), the toll-like receptor 4 (TLR4)-CD14 signaling complex initiates two distinct signaling pathways-one from the plasma membrane and the other from the signaling endosomes (Kagan et al., 2008). Understanding the early stages of TLR4 signal transduction therefore requires a robust and quantitative method to measure LPS-triggered TLR4 and CD14 receptor endocytosis, one of the earliest events of LPS detection. Here, we describe a flow cytometry-based method that we used recently to study the role of the ion channel TRPM7 in TLR4 endocytosis (Schappe et al., 2018). The assay relies on stimulating the cells with LPS and measuring the cell surface levels of TLR4 (or CD14) at various time points using flow cytometry. Although we detail the method specifically for TLR4 and CD14 from murine bone marrow-derived macrophages, it can be readily adapted to evaluate receptor endocytosis in a variety of other signaling contexts.

5.
Proc Natl Acad Sci U S A ; 115(27): E6254-E6263, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29891687

RESUMO

Adipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in Mox macrophages, but the presence of the Mox phenotype in adipose tissue has not been reported. Here we show, using extracellular flux analysis, that ATMs isolated from lean mice are metabolically inhibited. We identify a unique population of CX3CR1neg/F4/80low ATMs that resemble the Mox (Txnrd1+HO1+) phenotype to be the predominant ATM phenotype in lean adipose tissue. In contrast, ATMs isolated from obese mice had characteristics typical of the M1/M2 (CD11c+CD206+) phenotype with highly activated bioenergetics. Quantifying individual OxPL species in the stromal vascular fraction of murine adipose tissue, using targeted liquid chromatography-mass spectrometry, revealed that high fat diet-induced adipose tissue expansion led to a disproportional increase in full-length over truncated OxPL species. In vitro studies showed that macrophages respond to truncated OxPL species by suppressing bioenergetics and up-regulating antioxidant programs, mimicking the Mox phenotype of ATMs isolated from lean mice. Conversely, full-length OxPL species induce proinflammatory gene expression and an activated bioenergetic profile that mimics ATMs isolated from obese mice. Together, these data identify a redox-regulatory Mox macrophage phenotype to be predominant in lean adipose tissue and demonstrate that individual OxPL species that accumulate in adipose tissue instruct ATMs to adapt their phenotype and bioenergetic profile to either maintain redox homeostasis or to promote inflammation.


Assuntos
Tecido Adiposo , Antígenos de Diferenciação , Metabolismo Energético , Macrófagos , Obesidade , Fosfolipídeos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
6.
Immunity ; 48(1): 59-74.e5, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343440

RESUMO

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1ß and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.


Assuntos
Cálcio/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Técnicas de Cultura de Células , Endocitose/efeitos dos fármacos , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica , Técnicas de Genotipagem , Immunoblotting , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/genética
7.
J Gen Physiol ; 150(1): 19-39, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233884

RESUMO

Pannexin 1 (Panx1) forms plasma membrane ion channels that are widely expressed throughout the body. Panx1 activation results in the release of nucleotides such as adenosine triphosphate and uridine triphosphate. Thus, these channels have been implicated in diverse physiological and pathological functions associated with purinergic signaling, such as apoptotic cell clearance, blood pressure regulation, neuropathic pain, and excitotoxicity. In light of this, substantial attention has been directed to understanding the mechanisms that regulate Panx1 channel expression and activation. Here we review accumulated evidence for the various activation mechanisms described for Panx1 channels and, where possible, the unitary channel properties associated with those forms of activation. We also emphasize current limitations in studying Panx1 channel function and propose potential directions to clarify the exciting and expanding roles of Panx1 channels.


Assuntos
Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Conexinas/química , Conexinas/genética , Humanos , Ativação do Canal Iônico , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA