Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(21): 6066-6076, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609877

RESUMO

Acidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface-water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large-scale assessments of long-term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid-sensitive lakes in Norway spanning 24 years (1997-2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid-sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long-term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.


Assuntos
Lagos , Zooplâncton , Animais , Zooplâncton/fisiologia , Ecossistema , Cálcio , Concentração de Íons de Hidrogênio
2.
Sci Total Environ ; 543(Pt A): 123-134, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26580734

RESUMO

Legislation in Europe has been adopted to determine and improve the ecological integrity of inland and coastal waters. Assessment is based on four biotic groups, including benthic macroinvertebrate communities. For lakes, benthic invertebrates have been recognized as one of the most difficult organism groups to use in ecological assessment, and hitherto their use in ecological assessment has been limited. In this study, we review and intercalibrate 13 benthic invertebrate-based tools across Europe. These assessment tools address different human impacts: acidification (3 methods), eutrophication (3 methods), morphological alterations (2 methods), and a combination of the last two (5 methods). For intercalibration, the methods were grouped into four intercalibration groups, according to the habitat sampled and putative pressure. Boundaries of the 'good ecological status' were compared and harmonized using direct or indirect comparison approaches. To enable indirect comparison of the methods, three common pressure indices and two common biological multimetric indices were developed for larger geographical areas. Additionally, we identified the best-performing methods based on their responsiveness to different human impacts. Based on these experiences, we provide practical recommendations for the development and harmonization of benthic invertebrate assessment methods in lakes and similar habitats.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Animais , Eutrofização , Lagos/química
3.
Sci Total Environ ; 478: 36-47, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530583

RESUMO

Numerous boreal lakes across the Northern Hemisphere recovering from acidification are experiencing a simultaneous increase in chloride (Cl) concentrations from road salting. Increasing Cl may have profound effects on the lake ecosystem. We examine if an increase in Cl from road salting has modified the recovery of the microcrustacean community in an acidified boreal lake undergoing chemical recovery (study lake). Results from the study lake were compared with an acidified "reference lake". The community changed during the study period in the study lake mainly driven by the reduction in acidification pressure. Despite the community changes and an increase in species richness, the absence of several acid sensitive species, previously occurring in the lake, indicates a delayed biological recovery relative to the chemical recovery. Moreover, changes in occurrence of acid sensitive and acid tolerant species indicated that the biological recovery was slower in the study lake compared to the "reference". Although recurrent episodes of high aluminum and low pH and decreasing Ca are likely important factors for the delay, these do not explain, for instance, the shift from Cyclops scutifer to Bosmina longispina in the study lake. Although the contribution of Cl was not significant, the correlation between Cl and the variation in microcrustacean community was twice as high in the study lake compared to the "reference". We argue that small, sheltered forest lakes may be especially sensitive to increased Cl levels, through changes in pattern of stratification, thus providing a mechanism for the shift from C. scutifer to B. longispina. The reduction of the acidification pressure seems to override the Cl effects on microcrustaceans at low Cl levels in salt-affected lakes recovering from acidification. However, prognoses for growing traffic and increasing road salting raise concern for many recovering lakes located in proximity to roads and urbanized areas.


Assuntos
Chuva Ácida , Lagos/química , Cloreto de Sódio/análise , Poluentes Químicos da Água/análise , Animais , Automóveis , Cladocera/classificação , Cladocera/crescimento & desenvolvimento , Copépodes/classificação , Copépodes/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Cloreto de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Environ Pollut ; 186: 115-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370669

RESUMO

The WHAM-FTOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H(+) < Al < Cu < Zn < Ni. In general, observed species richness is lower than predicted, but in some instances agreement is close, and is rarely higher than predictions. The model predicts recovery in agreement with observations for three regions, namely Sudbury (Canada), Bohemian Forest (Czech Republic) and a subset of lakes across Norway, but fails to predict observed recovery from acidification in Adirondack lakes (USA).


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Metais/toxicidade , Modelos Químicos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Canadá , Crustáceos/classificação , Crustáceos/efeitos dos fármacos , Crustáceos/crescimento & desenvolvimento , República Tcheca , Noruega , Prótons , Zooplâncton/classificação , Zooplâncton/crescimento & desenvolvimento
5.
Oecologia ; 170(2): 477-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22555356

RESUMO

Obtaining accurate estimates of diversity indices is difficult because the number of species encountered in a sample increases with sampling intensity. We introduce a novel method that requires that the presence of species in a sample to be assessed while the counts of the number of individuals per species are only required for just a small part of the sample. To account for species included as incidence data in the species abundance distribution, we modify the likelihood function of the classical Poisson log-normal distribution. Using simulated community assemblages, we contrast diversity estimates based on a community sample, a subsample randomly extracted from the community sample, and a mixture sample where incidence data are added to a subsample. We show that the mixture sampling approach provides more accurate estimates than the subsample and at little extra cost. Diversity indices estimated from a freshwater zooplankton community sampled using the mixture approach show the same pattern of results as the simulation study. Our method efficiently increases the accuracy of diversity estimates and comprehension of the left tail of the species abundance distribution. We show how to choose the scale of sample size needed for a compromise between information gained, accuracy of the estimates and cost expended when assessing biological diversity. The sample size estimates are obtained from key community characteristics, such as the expected number of species in the community, the expected number of individuals in a sample and the evenness of the community.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Animais , Ecossistema , Distribuição de Poisson , Reprodutibilidade dos Testes , Tamanho da Amostra
6.
PLoS One ; 6(4): e18930, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21526118

RESUMO

The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide.


Assuntos
Biodiversidade , Conhecimento , Natureza , Cidades , Ecossistema , Humanos , Modelos Biológicos , Noruega , Padrões de Referência , Incerteza
7.
Ambio ; 32(3): 208-13, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12839197

RESUMO

We identify littoral microcrustacean indicators of acidification in 2 surveys of Canadian Shield lakes conducted 10 years apart. We found a total of 90 cladoceran and copepod species with richness increasing severalfold from acidic to nonacidic lakes. The fauna of the nonacidic lakes differed between the surveys. The 1987 survey employed activity traps, and caught more littoral taxa than the more recent, net-haul-based survey. Similar faunas were identified in the acidified lakes in both surveys, and several good indicator species were identified. For example, Acanthocycops vernalis was restricted to lakes with pH < 6. Sinobosmina sp. was very common but only in lakes with pH > 4.8. Tropocyclops extensus, Mesocyclops edax, and Sida crystallina were commonly found but only at pH > 5, and Chydorus faviformis only at pH > 5.9. These indicators showed promise in gauging the early stages of recovery from acidification in 3 lakes that were included in both surveys.


Assuntos
Chuva Ácida/efeitos adversos , Cladocera , Copépodes , Animais , Canadá , Coleta de Dados , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Dinâmica Populacional , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA