Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132370, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666173

RESUMO

Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are of increasing concern and their environmental and human health impacts should be assessed due to their widespread presence and potential persistence in the environment. This study investigated the ultimate and primary biodegradability of ten heterocyclic PAHs, nine of which were found to be non-readily biodegradable. To generate a microbial community capable of degrading such compounds, a bacterial inoculum isolated from the effluent of a wastewater treatment plant (WWTP) was adapted to a mixture of heterocyclic PAHs for one year. Throughout the adaptation process, bacterial samples were collected at different stages to conduct primary biodegradation, ultimate biodegradation, and inoculum toxicity tests. Interestingly, after one year of adaptation, the community developed the ability to mineralize carbazole, but in the same time showed an increasing sensitivity to the toxic effects of benzo[c]carbazole. In two consecutive primary biodegradation experiments, degradation of four heterocycles was observed, while no biodegradation was detected for five compounds in any of the tests. Furthermore, the findings of this work were compared with predictions from in silico models regarding biodegradation timeframe and sorption, and it was found that the models were partially successful in describing these processes. The results of study provide valuable insights into the persistence of a representative group of heterocyclic PAHs in aquatic environments, which contributes to the hazard assessment of this particular class of substances.


Assuntos
Hidrocarbonetos Aromáticos , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Biodegradação Ambiental , Carbazóis
2.
Microorganisms ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677467

RESUMO

The recovery of metagenome-assembled genomes is biased towards the most abundant species in a given community. To improve the identification of species, even if only dominant species are recovered, we investigated the integration of flow cytometry cell sorting with bioinformatics tools to recover metagenome-assembled genomes. We used a cell culture of a wastewater microbial community as our model system. Cells were separated based on fluorescence signals via flow cytometry cell sorting into sub-communities: dominant gates, low abundant gates, and outer gates into subsets of the original community. Metagenome sequencing was performed for all groups. The unsorted community was used as control. We recovered a total of 24 metagenome-assembled genomes (MAGs) representing 11 species-level genome operational taxonomic units (gOTUs). In addition, 57 ribosomal operational taxonomic units (rOTUs) affiliated with 29 taxa at species level were reconstructed from metagenomic libraries. Our approach suggests a two-fold increase in the resolution when comparing sorted and unsorted communities. Our results also indicate that species abundance is one determinant of genome recovery from metagenomes as we can recover taxa in the sorted libraries that are not present in the unsorted community. In conclusion, a combination of cell sorting and metagenomics allows the recovery of MAGs undetected without cell sorting.

3.
Proc Natl Acad Sci U S A ; 119(17): e2117814119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446625

RESUMO

Building and changing a microbiome at will and maintaining it over hundreds of generations has so far proven challenging. Despite best efforts, complex microbiomes appear to be susceptible to large stochastic fluctuations. Current capabilities to assemble and control stable complex microbiomes are limited. Here, we propose a looped mass transfer design that stabilizes microbiomes over long periods of time. Five local microbiomes were continuously grown in parallel for over 114 generations and connected by a loop to a regional pool. Mass transfer rates were altered and microbiome dynamics were monitored using quantitative high-throughput flow cytometry and taxonomic sequencing of whole communities and sorted subcommunities. Increased mass transfer rates reduced local and temporal variation in microbiome assembly, did not affect functions, and overcame stochasticity, with all microbiomes exhibiting high constancy and increasing resistance. Mass transfer synchronized the structures of the five local microbiomes and nestedness of certain cell types was eminent. Mass transfer increased cell number and thus decreased net growth rates µ'. Subsets of cells that did not show net growth µ'SCx were rescued by the regional pool R and thus remained part of the microbiome. The loop in mass transfer ensured the survival of cells that would otherwise go extinct, even if they did not grow in all local microbiomes or grew more slowly than the actual dilution rate D would allow. The rescue effect, known from metacommunity theory, was the main stabilizing mechanism leading to synchrony and survival of subcommunities, despite differences in cell physiological properties, including growth rates.


Assuntos
Microbiota , Biotecnologia , Ecologia
4.
Nat Commun ; 12(1): 5481, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531395

RESUMO

A fundamental question in community ecology is the role of predator-prey interactions in food-web stability and species coexistence. Although microbial microcosms offer powerful systems to investigate it, interrogating the environment is much more arduous. Here, we show in a 1-year survey that the obligate predators Bdellovibrio and like organisms (BALOs) can regulate prey populations, possibly in a density-dependent manner, in the naturally complex, species-rich environments of wastewater treatment plants. Abundant as well as rarer prey populations are affected, leading to an oscillating predatory landscape shifting at various temporal scales in which the total population remains stable. Shifts, along with differential prey range, explain co-existence of the numerous predators through niche partitioning. We validate these sequence-based findings using single-cell sorting combined with fluorescent hybridization and community sequencing. Our approach should be applicable for deciphering community interactions in other systems.


Assuntos
Bdellovibrio/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Esgotos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bdellovibrio/classificação , Bdellovibrio/fisiologia , Ecossistema , Cadeia Alimentar , Variação Genética , Filogenia , Dinâmica Populacional , Análise de Célula Única/métodos
5.
mSystems ; 6(5): e0055121, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546074

RESUMO

Microbiome management research and applications rely on temporally resolved measurements of community composition. Current technologies to assess community composition make use of either cultivation or sequencing of genomic material, which can become time-consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yielded an average accuracy of 88.13% ± 4.78% across the top 50 operational taxonomic units (OTUs) of our data set. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yielded an average R2 of 0.35 ± 0.24 across the top 50 OTUs of our data set. Application of the models to flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell sorting, we validated that the model correctly associates taxa to regions in the cytometric fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline to two other data sets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods. IMPORTANCE Monitoring of microbial community composition is crucial for both microbiome management research and applications. Existing technologies, such as plating and amplicon sequencing, can become laborious and expensive when high-throughput measurements are required. In recent years, flow cytometry-based measurements of community diversity have been shown to correlate well with those derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting that there is a link between the taxonomic community composition and phenotypic properties as derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon sequencing and flow cytometry survey data in order to construct models that enable the prediction of both the presence and the abundances of individual bacterial taxa in mixed communities using flow cytometric fingerprinting. The developed pipeline holds great potential to be integrated into routine monitoring schemes and early warning systems for biotechnological applications.

6.
Nat Protoc ; 15(9): 2788-2812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32770154

RESUMO

Flow cytometry has recently established itself as a tool to track short-term dynamics in microbial community assembly and link those dynamics with ecological parameters. However, instrumental configurations of commercial cytometers and variability introduced through differential handling of the cells and instruments frequently cause data set variability at the single-cell level. This is especially pronounced with microorganisms, which are in the lower range of optical resolution. Although alignment beads are valuable to generally minimize instrumental noise and align overall machine settings, an artificial microbial cytometric mock community (mCMC) is mandatory for validating lab workflows and enabling comparison of data between experiments, thus representing a necessary reference standard for the reproducible cytometric characterization of microbial communities, especially in long-term studies. In this study, the mock community consisted of two Gram-positive and two Gram-negative bacterial strains, which can be assembled with respective subsets of cells, including spores, in any selected ratio or concentration. The preparation of the four strains takes a maximum of 5 d, and the stains are storable with either PFA/ethanol fixation at -20 °C or drying at 4 °C for at least 6 months. Starting from this stock, an mCMC can be assembled within 1 h. Fluorescence staining methods are presented and representatively applied with two high-resolution cell sorters and three benchtop flow cytometers. Benchmarked data sets allow the use of bioinformatic evaluation procedures to decode community behavior or convey qualified cell sorting decisions for subsequent high-resolution sequencing or proteomic routines.


Assuntos
Bactérias/citologia , Técnicas Citológicas/normas , Microbiota , Biologia Computacional , Padrões de Referência , Reprodutibilidade dos Testes
7.
Front Microbiol ; 11: 755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390989

RESUMO

Recent research has demonstrated that MAIT cells are activated by individual bacterial or yeasts species that possess the riboflavin biosynthesis pathway. However, little is known about the MAIT cell activating potential of microbial communities and the contribution of individual community members. Here, we analyze the MAIT cell activating potential of a human intestinal model community (SIHUMIx) as well as intestinal microbiota after bioreactor cultivation. We determined the contribution of individual SIHUMIx community members to the MAIT cell activating potential and investigated whether microbial stress can influence their MAIT cell activating potential. The MAIT cell activating potential of SIHUMIx was directly related to the relative species abundances in the community. We therefore suggest an additive relationship between the species abundances and their MAIT cell activating potential. In diverse microbial communities, we found that a low MAIT cell activating potential was associated with high microbial diversity and a high level of riboflavin demand and vice versa. We suggest that microbial diversity might affect MAIT cell activation via riboflavin utilization within the community. Microbial acid stress significantly reduced the MAIT cell activating potential of SIHUMIx by impairing riboflavin availability through increasing the riboflavin demand. We show that MAIT cells can perceive microbial stress due to changes in riboflavin utilization and that riboflavin availability might also play a central role for the MAIT cell activating potential of diverse microbiota.

8.
Gut Microbes ; 11(4): 1116-1129, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918607

RESUMO

Diverse intestinal microbiota is frequently used in in vitro bioreactor models to study the effects of diet, chemical contaminations, or medication. However, the reproducible cultivation of fecal microbiota is challenging and the resultant communities behave highly dynamic. To approach the issue of reproducibility in in vitro models, we established an intestinal microbiota model community of reduced complexity, SIHUMIx, as a valuable model for in vitro use. The development of the SIHUMIx community was monitored over time with methods covering the cellular and the molecular level. We used microbial flow cytometry, intact protein profiling and terminal restriction fragment length polymorphism analysis to assess community structure. In parallel, we analyzed the functional level by targeted analysis of short-chain fatty acids and untargeted metabolomics. The stability properties constancy, resistance, and resilience were approached both on the structural and functional level of the community. We show that the SIHUMIx community is highly reproducible and constant since day 5 of cultivation. Furthermore, SIHUMIx has the ability to resist and recover from a pulsed perturbation, with changes in community structure recovered earlier than functional changes. Since community structure and function changed divergently, both levels need to be monitored at the same time to gain a full overview of the community development. All five methods are highly suitable to follow the community dynamics of SIHUMIx and indicated stability on day five. This makes SIHUMIx a suitable in vitro model to investigate the effects of e.g. medical, chemical, or dietary interventions.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Microbioma Gastrointestinal , Intestinos/microbiologia , Bactérias/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Metabolômica , Reprodutibilidade dos Testes
9.
Microorganisms ; 7(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816881

RESUMO

Many functions in host-microbiota interactions are potentially influenced by intestinal transit times, but little is known about the effects of altered transition times on the composition and functionality of gut microbiota. To analyze these effects, we cultivated the model community SIHUMIx in bioreactors in order to determine the effects of varying transit times (TT) on the community structure and function. After five days of continuous cultivation, we investigated the influence of different medium TT of 12 h, 24 h, and 48 h. For profiling the microbial community, we applied flow cytometric fingerprinting and revealed changes in the community structure of SIHUMIx during the change of TT, which were not associated with changes in species abundances. For pinpointing metabolic alterations, we applied metaproteomics and metabolomics and found, along with shortening the TT, a slight decrease in glycan biosynthesis, carbohydrate, and amino acid metabolism and, furthermore, a reduction in butyrate, methyl butyrate, isobutyrate, valerate, and isovalerate concentrations. Specifically, B. thetaiotaomicron was identified to be affected in terms of butyrate metabolism. However, communities could recover to the original state afterward. This study shows that SIHUMIx showed high structural stability when TT changed-even four-fold. Resistance values remained high, which suggests that TTs did not interfere with the structure of the community to a certain degree.

10.
Microb Cell Fact ; 18(1): 92, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138218

RESUMO

BACKGROUND: The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse ß-oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. RESULTS: Caproate and caprylate titres of up to 6.12 g L-1 and 1.83 g L-1, respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (rS > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella, two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. CONCLUSIONS: High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria.


Assuntos
Ácidos Acíclicos/metabolismo , Reatores Biológicos , Ácidos Graxos/biossíntese , Ácido Láctico/metabolismo , Microbiota , Fermentação , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S , Análise de Célula Única
11.
Artigo em Inglês | MEDLINE | ID: mdl-30972336

RESUMO

This work aims to investigate the long-term behavior of interactions of electrochemically active bacteria in bioelectrochemical systems. The electrochemical performance and biofilm characteristics of pure cultures of Geobacter sulfurreducens and Shewanella oneidensis are being compared to a defined mixed culture of both organisms. While S. oneidensis pure cultures did not form cohesive and stable biofilms on graphite anodes and only yielded 0.034 ± 0.011 mA/cm2 as maximum current density by feeding of each 5 mM lactate and acetate, G. sulfurreducens pure cultures formed 69 µm thick, area-wide biofilms with 10 mM acetate as initial substrate concentration and yielded a current of 0.39 ± 0.09 mA/cm2. Compared to the latter, a defined mixed culture of both species was able to yield 38% higher maximum current densities of 0.54 ± 0.07 mA/cm2 with each 5 mM lactate and acetate. This increase in current density was associated with a likewise increased thickness of the anodic biofilm to approximately 93 µm. It was further investigated whether a sessile incorporation of S. oneidensis into the mixed culture biofilm, which has been reported previously for short-term experiments, is long-term stable. The results demonstrate that S. oneidensis was not stably incorporated into the biofilm; rather, the planktonic presence of S. oneidensis has a positive effect on the biofilm growth of G. sulfurreducens and thus on current production.

12.
J Vis Exp ; (137)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059034

RESUMO

The investigation of pure cultures and monitoring of microbial community dynamics is vital to understand and control natural ecosystems and technical applications driven by microorganisms. Next generation sequencing methods are widely utilized to resolve microbiomes, but they are generally resource and time intensive and deliver mostly qualitative information. Flow cytometric microbiome analysis does not suffer from those disadvantages and can provide relative subcommunity abundances and absolute cell numbers at-line. Although it does not deliver direct phylogenetic information, it can enhance the analysis depth and resolution of sequencing approaches. In sharp contrast to medical applications in both research and routine settings, flow cytometry is still not widely used for microbiome analysis. Missing information on sample preparation and data analysis pipelines may create an entry barrier for the researchers facing microbiome analysis challenges that would often be textbook flow cytometry applications. Here, we present three comprehensive workflows for pure cultures, complex communities in clear medium and complex communities in challenging matrices, respectively. We describe individual sampling and fixation procedures and optimized staining protocols for the respective sample sets. We elaborate the cytometric analysis with a complex research centered and an application focused bench top device, describe the cell sorting procedure and suggest data analysis packages. We furthermore propose important experimental controls and apply the presented workflows to the respective sample sets.


Assuntos
Citometria de Fluxo/métodos , Microbiota/fisiologia
13.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359193

RESUMO

Natural microbial communities affect human life in countless ways, ranging from global biogeochemical cycles to the treatment of wastewater and health via the human microbiome. In order to probe, monitor, and eventually control these communities, fast detection and evaluation methods are required. In order to facilitate rapid community analysis and monitor a community's dynamic behavior with high resolution, we here apply community flow cytometry, which provides single-cell-based high-dimensional data characterizing communities with high acuity over time. To interpret time series data, we draw inspiration from macroecology, in which a rich set of concepts has been developed for describing population dynamics. We focus on the stability paradigm as a promising candidate to interpret such data in an intuitive and actionable way and present a rapid workflow to monitor stability properties of complex microbial ecosystems. Based on single-cell data, we compute the stability properties resistance, resilience, displacement speed, and elasticity. For resilience, we also introduce a method which can be implemented for continuous online community monitoring. The proposed workflow was tested in a long-term continuous reactor experiment employing both an artificial and a complex microbial community, which were exposed to identical short-term disturbances. The computed stability properties uncovered the superior stability of the complex community and demonstrated the global applicability of the protocol to any microbiome. The workflow is able to support high temporal sample densities below bacterial generation times. This may provide new opportunities to unravel unknown ecological paradigms of natural microbial communities, with applications to environmental, biotechnological, and health-related microbiomes. IMPORTANCE Microbial communities drive many processes which affect human well-being directly, as in the human microbiome, or indirectly, as in natural environments or in biotechnological applications. Due to their complexity, their dynamics over time is difficult to monitor, and current sequence-based approaches are limited with respect to the temporal resolution. However, in order to eventually control microbial community dynamics, monitoring schemes of high temporal resolution are required. Flow cytometry provides single-cell-based data in the required temporal resolution, and we here use such data to compute stability properties as easy to interpret univariate indicators of microbial community dynamics. Such monitoring tools will allow for a fast, continuous, and cost-effective screening of stability states of microbiomes. Applicable to various environments, including bioreactors, surface water, and the human body, it will contribute to the development of control schemes to manipulate microbial community structures and performances.

14.
Front Microbiol ; 9: 3211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671038

RESUMO

Due to their strong antimicrobial activity, silver nanoparticles (AgNPs) are massively produced, applied, consumed and, as a negative consequence, released into wastewater treatment plants. Most AgNPs are assumed to be bound by sludge, and thus bear potential risk for microbial performance and stability. In this lab-scale study, flow cytometry as a high-throughput method and 16S rRNA gene amplicon Illumina MiSeq sequencing were used to track microbial community structure changes when being exposed to AgNPs. Both methods allowed deeper investigation of the toxic impact of chemicals on microbial communities than classical EC50 determination. In addition, ecological metrics were used to quantify microbial community variations depending on AgNP types (10 and 30 nm) and concentrations. Only low changes in α- and intra-community ß-diversity values were found both in successive negative and positive control batches and batches that were run with AgNPs below the EC50 value. Instead, AgNPs at EC50 concentrations caused upcoming of certain and disappearance of formerly dominant subcommunities. Flavobacteriia were among those that almost disappeared, while phylotypes affiliated with Gammaproteobacteria (3.6-fold) and Bacilli (8.4-fold) increased in cell abundance in comparison to the negative control. Thus, silver amounts at the EC50 value affected community structure suggesting a potential negative impact on functions in wastewater treatment systems.

15.
Eur J Immunol ; 48(1): 161-167, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875499

RESUMO

Conflicting evidence has been provided as to whether induction of intestinal inflammation by adoptive transfer of naïve T cells into Rag-/- mice requires expression of the transcription factor T-bet by the T cells. Here, we formally show that the intestinal microbiota composition of the Rag-/- recipient determines whether or not T-bet-deficient Th cells can induce colitis and we have resolved the differences of the two microbiomes, permissive or non-permissive to T-bet-independent colitis. Our data highlight the dominance of the microbiota over particular T cell differentiation programs in the pathogenesis of chronic intestinal inflammation.


Assuntos
Colite/imunologia , Colite/microbiologia , Microbioma Gastrointestinal/imunologia , Proteínas com Domínio T/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/transplante , Transferência Adotiva/métodos , Animais , Diferenciação Celular/imunologia , Colite/genética , Colite/patologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia
16.
Methods ; 134-135: 67-79, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842259

RESUMO

Microbial flow cytometry is an established fast and economic technique for complex ecosystem studies and enables visualization of rapidly changing community structures by measuring characteristics of single microbial cells. Cytometric evaluation routines are available such as flowCyBar which are useful for automatic data processing. Here, a cytometric workflow was established which allows to routinely analyze salivary microbiomes on the example of ten oral healthy subjects. First, saliva was collected within a 3-month period, cytometrically analyzed and the evolution of the microbiomes followed as well as the calculation of their intra- and inter-subject similarity. Second, the respective microbiomes were stressed by exposition to high sugar or acid concentrations and immediate changes were recorded. Third, bactericide solutions were tested on their impact on the microbiomes. In all three set ups huge intra-individual variations in cytometric community structures were found to be largely absent, even under stress, while inter-individual diversity was obvious. The bacterial cell counts of saliva samples were found to vary between 3.0×107 and 6.2×108 cells per sample and subject in undisturbed environments. The application of the two bactericides did not cause noteworthy diversity changes but the loss in cell numbers by about 50% was high after treatment. Illumina® sequencing of whole microbiomes or sorted sub-microbiomes revealed typical phyla such as Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. This approach is useful for fast monitoring of individual salivary microbiomes and automatic calculation of intra- and inter-individual dynamic changes and variability and opens insight into ecological principles leading to their sustainment in their individual environment.


Assuntos
Citometria de Fluxo/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Saliva/microbiologia , Humanos , Metagenoma/genética , Filogenia , RNA Ribossômico 16S/isolamento & purificação
17.
Eur J Immunol ; 46(5): 1300-3, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26909672

RESUMO

Using high-resolution flow cytometry of bacterial shape (forward scatter) and DNA content (DAPI staining), we detected dramatic differences in the fecal microbiota composition during murine colitis that were validated using 16S rDNA sequencing. This innovative method provides a fast and inexpensive tool to interrogate the microbiota on the single-cell level.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Colite/microbiologia , Fezes/microbiologia , Citometria de Fluxo/métodos , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/citologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Filogenia , RNA Ribossômico 16S/genética
18.
Microb Biotechnol ; 8(5): 801-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25737100

RESUMO

Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion.


Assuntos
Archaea/classificação , Bactérias/classificação , Dióxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Metano/metabolismo , Triticum/metabolismo , Álcalis , Anaerobiose , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biotransformação , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Consórcios Microbianos , Dados de Sequência Molecular , Filogenia , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Triticum/efeitos dos fármacos
19.
J Perinat Med ; 40(5): 475-81, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22945272

RESUMO

AIMS: The expression of the anti-inflammatory glycoprotein progranulin and the hypoxia-induced transcription factor 1α (HIF-1α) in the villous trophoblast was compared between placentae from patients with preeclampsia (PE), fetal growth restriction (FGR), and normal controls. STUDY DESIGN: Matched pairs analysis of third trimester placentae specimens (mean gestational age 36+2) was performed by semiquantitative measurements of the immunohistochemical staining intensities for progranulin and HIF-1α expression (PE n=13, FGR n=9 and controls n=11). Further, placental progranulin mRNA expression was analyzed by qRT-PCR on term placentae (n=3 for each group). RESULTS: Compared to controls, villous trophoblast revealed a significantly higher expression of progranulin in cases of PE (P<0.05) and FGR (P<0.01). Similar results were shown for HIF-1α expression (P<0.01 for PE and <0.05 for FGR). The increase of the progranulin protein was not accompanied by an increase of the progranulin mRNA in term placentae. CONCLUSIONS: Increased expression of progranulin protein in villous trophoblast cells in cases of PE and FGR may result from disturbed placental development and, therefore, may be of pathogenetic importance. The increase was correlated to HIF-1α expression. Further evaluation of this potential mechanism of regulation is required.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Adolescente , Adulto , Feminino , Humanos , Gravidez , Progranulinas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA