Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38792688

RESUMO

This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.

2.
Viruses ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140539

RESUMO

Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.


Assuntos
Culex , Culicidae , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , RNA Viral/genética , Mosquitos Vetores , Flavivirus/genética , Vírus do Nilo Ocidental/genética , Alemanha/epidemiologia
3.
Parasit Vectors ; 16(1): 369, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853399

RESUMO

BACKGROUND: Although haemosporidian parasites may cause considerable health and economic problems in aviaries, there is limited understanding of the vectors transmitting them. Mosquito-borne Plasmodium species are responsible for the deaths of numerous exotic (= immunologically naïve) birds in zoos every year, while native birds are adapted to the parasites and largely protected by an effective immune response. METHODS: Mosquitoes were collected in bird/animal parks, wetlands and private gardens in various regions of Germany from 2020 to 2022. Females were pooled with up to 10 specimens according to taxon, location and date. Extracted DNA was screened for avian Haemosporida-specific mitochondrial rDNA using real-time polymerase chain reaction (PCR). Positive samples were amplified by a Plasmodium/Haemoproteus-specific nested PCR targeting the partial cytochrome b gene, followed by sequencing of the PCR product for species identification. Sequences were checked against GenBank and MalAvi databases. RESULTS: PCR of 2633 pools with 8834 female mosquitoes signalled infection with Plasmodium in 46 pools and with Haemoproteus in one pool. Further amplification and sequencing demonstrated the occurrence of Haemoproteus majoris lineage PARUS1 (n = 1) as well as several Plasmodium species and lineages, including Plasmodium relictum SGS1 (n = 16) and GRW11 (n = 1), P. matutinum LINN1 (n = 13), P. vaughani SYAT05 (n = 10), P. circumflexum TURDUS01 (n = 3), P. cathemerium PADOM02 (n = 1) and Plasmodium sp. SYBOR02 (n = 1) and PLOPRI01 (n = 1). The infections were detected in Culex pipiens sensu lato (n = 40), Culiseta morsitans/fumipennis (n = 6) and Aedes cinereus/geminus (n = 1). CONCLUSIONS: Although the overall Plasmodium minimum infection rate (5.2) appears to be low, the results demonstrated not only the ongoing circulation of Plasmodium parasites in the German mosquito population, but also the occurrence of eight distinct Plasmodium lineages, with three of them (PADOM02, SYBOR02, PLOPRI01) being detected in Germany for the first time. This study highlights the importance of conducting mosquito-borne pathogen surveillance studies simultaneously targeting vectors and vertebrate hosts, as certain species may be detected more readily in their vectors than in their vertebrate hosts, and vice versa.


Assuntos
Aedes , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Feminino , Animais , Mosquitos Vetores/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Malária Aviária/parasitologia
4.
Arch Insect Biochem Physiol ; 113(3): e22013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36973856

RESUMO

Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.


Assuntos
Triatoma , Animais , Saliva , Muramidase , Comportamento Alimentar , Glândulas Salivares
5.
Parasitol Res ; 121(7): 2033-2041, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507065

RESUMO

Investigating parameters influencing natural infections with Trypanosoma cruzi via the skin, the diameters of mouthparts of different stages of triatomines vectors were measured to determine the size of the channel accessible for T. cruzi during cutaneous infection. The mean diameters of the skin-penetrating mandibles of first to fifth instar nymphs of the vector Triatoma infestans increased from 18 to 65 µm. The mean diameter in fourth instar nymphs of Dipetalogaster maxima was 86 µm. Different numbers of isolated vector-derived metacyclic trypomastigotes (10-10,000) were injected intradermally into mice. Prepatent periods, parasitemia and mortality rates were compared with those of mice obtaining 10,000 metacyclic trypomastigotes that are usually present in the first drop of faeces onto the feeding wounds of fifth and fourth instar nymphs of T. infestans and D. maxima, respectively. After injection of 50-10,000 T. cruzi, in all 42 mice the infection developed. An injection of 10 parasites induced an infection in 8 out of 15 mice. With increasing doses of parasites, prepatent periods tended to decrease. The level of parasitemia was higher after injection of the lowest dose. Except for one mouse all infected mice died. After placement of 10,000 metacyclic trypomastigotes onto the feeding wound of fifth or fourth instar nymphs of T. infestans and D. maxima, respectively, the infection rates of the groups, prepatent periods and the levels of parasitemia of T. cruzi in mice indicated that about 10-1,000 metacyclic trypomastigotes entered the skin via this route. For the first time, the present data emphasise the risk of an infection by infectious excreta of triatomines deposited near the feeding wound and the low number of invading parasites.


Assuntos
Doença de Chagas , Parasitos , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Camundongos , Ninfa , Parasitemia/parasitologia , Triatoma/parasitologia
6.
Res Rep Trop Med ; 12: 63-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093053

RESUMO

This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.

7.
Parasit Vectors ; 13(1): 623, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334377

RESUMO

BACKGROUND: Aedes japonicus japonicus, first detected in Europe in 2000 and considered established in Germany 10 years later, is of medical importance due to its opportunistic biting behaviour and its potential to transmit pathogenic viruses. Its seasonal phenology, temperature and land use preference related to oviposition in newly colonised regions remain unclear, especially in the context of co-occurring native mosquito species. METHODS: Focussing on regions in Germany known to be infested by Ae. japonicus japonicus, we installed ovitraps in different landscapes and their transition zones and recorded the oviposition activity of mosquitoes in relation to season, temperature and land use (arable land, forest, settlement) in two field seasons (May-August 2017, April-November 2018). RESULTS: Ae. japonicus japonicus eggs and larvae were encountered in 2017 from June to August and in 2018 from May to November, with a markedly high abundance from June to September in rural transition zones between forest and settlement, limited to water temperatures below 30 °C. Of the three native mosquito taxa using the ovitraps, the most frequent was Culex pipiens s.l., whose offspring was found in high numbers from June to August at water temperatures of up to 35 °C. The third recorded species, Anopheles plumbeus, rarely occurred in ovitraps positioned in settlements and on arable land, but was often associated with Ae. japonicus japonicus. The least frequent species, Aedes geniculatus, was mostly found in ovitraps located in the forest. CONCLUSIONS: The transition zone between forest and settlement was demonstrated to be the preferred oviposition habitat of Ae. japonicus japonicus, where it was also the most frequent container-inhabiting mosquito species in this study. Compared to native taxa, Ae. japonicus japonicus showed an extended seasonal activity period, presumably due to tolerance of colder water temperatures. Higher water temperatures and arable land represent distribution barriers to this species. The frequently co-occurring native species An. plumbeus might be useful as an indicator for potentially suitable oviposition habitats of Ae. japonicus japonicus in hitherto uncolonised regions. The results contribute to a better understanding of mosquito ecology and provide a basis for more targeted monitoring, distribution modelling and risk management of mosquitoes.


Assuntos
Aedes/fisiologia , Infecções por Arbovirus/prevenção & controle , Espécies Introduzidas , Mosquitos Vetores/fisiologia , Animais , Mudança Climática , Feminino , Alemanha/epidemiologia , Oviposição , Estações do Ano
8.
J Vector Ecol ; 44(2): 241-247, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729795

RESUMO

Some limnic copepod species are predators of mosquito larvae. Seven species belonging to the order Cyclopoida, family Cyclopidae, were collected in the field in Germany and tested for the first time in laboratory bioassays for their potential to serve as biological control agents of the invasive Asian bush mosquito Aedes japonicus (Theobald), a vector of various pathogens causing disease. Females of Diacyclops bicuspidatus (Claus) did not attack 1st instar larvae of Ae. japonicus, but Macrocyclops distinctus (Richard), Cyclops divergens Lindberg, and C. heberti Einsle predated a mean of 14, 18, or 19 1st instar larvae, respectively. Acanthocyclops einslei Mirabdullayev and Defaye killed 30 larvae, and high predation rates with a mean of 39 or 46 larvae, respectively, were obtained by Megacyclops viridis (Jurine) and M. gigas (Claus). In regression analyses, predation rates by M. viridis correlated with body size, with specimens of 1.8 mm length being more effective than smaller or bigger ones. Based on the presented data, the two Megacyclops species seem to be promising candidates for use in field studies on the biological control of Ae. japonicus.


Assuntos
Aedes/fisiologia , Copépodes/fisiologia , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Controle Biológico de Vetores , Animais , Organismos Aquáticos , Feminino , Alemanha , Larva , Comportamento Predatório
9.
Parasit Vectors ; 12(1): 109, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871592

RESUMO

After the first detection of the Asian bush mosquito Aedes japonicus japonicus in the year 2000 in France, its invasive nature was revealed in 2008 in Switzerland and Germany. In the following years, accumulating reports have shown that Ae. j. japonicus succeeded in establishing in several European countries. Surveillance efforts suggest that there are currently four populations in Europe, with the largest one, formed by the recent fusion of several smaller populations, ranging from West Germany, with extensions to Luxembourg and French Alsace, southwards to Switzerland and continuing westwards through Liechtenstein to western Austria. This paper summarises the present distribution of Ae. j. japonicus in Europe, based on published literature and hitherto unpublished findings by the authors, and critically reviews the monitoring strategies applied. A proposal for a more standardised monitoring approach is provided, aiming at the harmonisation of future data collections for improving the comparability between studies and the suitability of collected data for further research purposes, e.g. predictive modelling approaches.


Assuntos
Aedes/fisiologia , Aedes/classificação , Distribuição Animal , Animais , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Espécies Introduzidas
10.
Front Immunol ; 9: 2794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619242

RESUMO

After infection with Trypanosoma cruzi, the etiologic agent of Chagas disease, immunosuppression, and apoptosis of mature lymphocytes contribute to the establishment of the parasite in the host and thereby to persistence and pathology in the chronic stage of infection. In a systemic mouse model of experimental Chagas disease, we have demonstrated a strong depletion of mature B cells in the spleen during the first 2 weeks of infection. Remarkably, the decrease in this cell population commenced already in the bone marrow from infected mice and was a concomitant of an increased apoptosis in pro- and pre-B cell populations. Pro- and pre-B cells in the bone marrow showed a significant reduction accompanied by a functional disturbance of bone marrow-derived stromal cells resulting in diminished levels of IL-7, an essential factor for the development of B cell precursors. Ex vivo, stromal cells isolated from the bone marrow of infected mice had a strikingly impaired capacity to maintain the development of pro- and pre-B cells obtained from uninfected animals. Together, the reduction of an active humoral immune response during acute Chagas disease suggests to be an initial immune evasion mechanism of the parasite to establish persistent infection. Therefore, prevention of B cell depletion by rescuing the stromal cells during this early phase, could give rise to new therapeutic approaches.


Assuntos
Células da Medula Óssea/imunologia , Doença de Chagas/imunologia , Tolerância Imunológica , Trypanosoma cruzi/imunologia , Doença Aguda , Animais , Apoptose/imunologia , Células da Medula Óssea/parasitologia , Células da Medula Óssea/patologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Doença Crônica , Interleucina-7/imunologia , Camundongos , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/parasitologia , Células Precursoras de Linfócitos B/patologia , Baço/imunologia , Baço/parasitologia , Baço/patologia , Células Estromais/imunologia , Células Estromais/parasitologia , Células Estromais/patologia
11.
J Med Entomol ; 53(6): 1292-1302, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27498885

RESUMO

The castor bean tick Ixodes ricinus (L.) is the principal vector for a variety of viral, bacterial, and protozoan pathogens causing a growing public-health issue over the past decades. However, a national density map of I. ricinus is still missing. Here, I. ricinus nymphs in Germany were investigated by compiling a high-resolution map depicting the mean annually accumulated nymphal density, as observed by monthly flagging an area of 100 m2 Input data comprise ticks collected at 69 sampling sites. The model domain covers an area of about 357,000 km2 (regional scale). Two negative binomial regression models were fitted to the data to interpolate the tick densities to unsampled locations using bioclimatic variables and land cover, which were selected according to their significance by the Akaike information criterion (AIC). The default model was fitted to the complete dataset resulting in AIC = 842. An optimized model resulted in a significantly better value of AIC = 732. Tick densities are very low in urban (green) areas. Maximum annual densities up to 1,000 nymphs per 100 m2 are observed in broad-leaved forests. The tick maps were verified by leave-one-out cross-validation. Root mean square errors of RMSE = 137 and RMSE = 126 nymphs per 100 m2 were estimated for the two models, respectively. These errors are of the order of the interannual variation of the tick densities. The compilation of a high-resolution density map of unfed nymphal I. ricinus for Germany provides a novel, nationwide insight into the distribution of an important disease vector.


Assuntos
Distribuição Animal , Vetores Aracnídeos/fisiologia , Ixodes/fisiologia , Animais , Vetores Aracnídeos/microbiologia , Encefalite Transmitida por Carrapatos/transmissão , Alemanha , Ixodes/crescimento & desenvolvimento , Ixodes/microbiologia , Doença de Lyme/transmissão , Modelos Biológicos , Ninfa/microbiologia , Ninfa/fisiologia , Densidade Demográfica
13.
PLoS Negl Trop Dis ; 8(12): e3372, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474469

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas disease in South America. As in all hematophagous arthropods, its saliva contains a complex cocktail that assists blood feeding by preventing platelet aggregation and blood clotting and promoting vasodilation. These salivary components can be immunologically recognized by their vector's hosts and targeted with antibodies that might disrupt blood feeding. These antibodies can be used to detect vector exposure using immunoassays. Antibodies may also contribute to the fast evolution of the salivary cocktail. METHODOLOGY: Salivary gland cDNA libraries from nymphal and adult T. infestans of breeding colonies originating from different locations (Argentina, Chile, Peru and Bolivia), and cDNA libraries originating from F1 populations of Bolivia, were sequenced using Illumina technology. Coding sequences (CDS) were extracted from the assembled reads, the numbers of reads mapped to these CDS, sequences were functionally annotated and polymorphisms determined. MAIN FINDINGS/SIGNIFICANCE: Over five thousand CDS, mostly full length or near full length, were publicly deposited on GenBank. Transcripts that were over 10-fold overexpressed from different geographical regions, or from different developmental stages were identified. Polymorphisms were mapped to derived coding sequences, and found to vary between developmental instars and geographic origin of the biological material. This expanded sialome database from T. infestans should be of assistance in future proteomic work attempting to identify salivary proteins that might be used as epidemiological markers of vector exposure, or proteins of pharmacological interest.


Assuntos
Biblioteca Gênica , Saliva/química , Proteínas e Peptídeos Salivares/genética , Transcriptoma/genética , Triatoma/genética , Animais , Proteínas e Peptídeos Salivares/metabolismo , América do Sul , Triatoma/metabolismo
14.
Parasitol Res ; 113(10): 3759-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033816

RESUMO

In this article, the results of a long effort to derive valuable phylogenetic data about an extraordinary spore-like infectious particle (endocytobiont) within host amoebae (Acanthamoeba sp.) recently isolated from the contact lens and the inflamed eye of a patient with keratitis are presented. The development of these endocytobionts has already been demonstrated with electron microscopic photo sequences, leading to a relevant model of its development presented here. The molecular biological investigation following the discovery of two other Pandoravirus species within aquatic sediments in 2013 led to the taxonomic affiliation of our endocytobiont with the genus Pandoravirus. A range of endocytobionts (intracellular biofilms) have been found in recent years, among which are several viruses which obligatorily proliferate within free-living amoebae. In human medicine, foreign objects which are placed in or on humans cause problems with microorganisms in biofilms. Contact lenses are especially important, because they are known as a source of a rapid formation of biofilm. These were the first Pandoraviruses described, and because this is additionally the first documented association with humans, we have clearly demonstrated how easily such (viral) endocytobionts can be transferred to humans. This case counts as an example of parasites acting as vectors of phylogenetically different microorganisms especially when living sympatric within their biocoenosis of biofilms. As the third part of the "Pandoravirus trilogy", it finally reveals the phylogenetic nature of these "extraordinary endocytobionts" within Acanthamoebae.


Assuntos
Acanthamoeba/virologia , Vetores de Doenças , Ceratite/parasitologia , Vírus/classificação , Animais , Sequência de Bases , Biofilmes , Lentes de Contato/parasitologia , Lentes de Contato/virologia , Olho/parasitologia , Humanos , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Fenômenos Fisiológicos Virais , Vírus/genética , Vírus/isolamento & purificação
15.
PLoS Negl Trop Dis ; 8(4): e2783, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699441

RESUMO

BACKGROUND: Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. METHODOLOGY AND PRINCIPAL FINDINGS: In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. CONCLUSION: Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.


Assuntos
Anticorpos/sangue , Biomarcadores/sangue , Mordeduras e Picadas/imunologia , Proteínas de Insetos/imunologia , Proteínas e Peptídeos Salivares/imunologia , Triatoma , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Feminino , Cobaias , Masculino , Proteoma/análise , Proteínas e Peptídeos Salivares/análise , América do Sul
16.
PLoS Negl Trop Dis ; 8(1): e2594, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416461

RESUMO

The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.


Assuntos
Proteínas de Insetos/genética , Rhodnius/genética , Transcriptoma , Animais , Feminino , Trato Gastrointestinal , Proteínas de Insetos/biossíntese , América Latina , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Parasitol Res ; 112(4): 1787-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23242268

RESUMO

During a small-scale surveillance project to identify possible routes of entry for invasive mosquitoes into Germany, 14 adult Aedes (Stegomyia) albopictus (Skuse) were discovered between July and October 2012. They were trapped at three different service stations in Bavaria and Baden-Wuerttemberg located along two motorways that connect Germany with southern Europe. This indicates regular introduction of A. albopictus into Germany and highlights the need for a continuous surveillance and control programme.


Assuntos
Aedes/crescimento & desenvolvimento , Animais , Alemanha , Controle de Mosquitos
18.
Parasit Vectors ; 5: 268, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171708

RESUMO

BACKGROUND: During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. METHODS: In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. RESULTS: A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. CONCLUSIONS: Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis.


Assuntos
Grupo Borrelia Burgdorferi/isolamento & purificação , Ixodes/crescimento & desenvolvimento , Ixodes/microbiologia , Animais , Grupo Borrelia Burgdorferi/classificação , Grupo Borrelia Burgdorferi/genética , DNA Bacteriano/genética , Alemanha , Reação em Cadeia da Polimerase , Densidade Demográfica , Prevalência , Fatores de Tempo
19.
Insect Biochem Mol Biol ; 42(4): 240-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210150

RESUMO

Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Insetos/metabolismo , Triatoma/enzimologia , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/isolamento & purificação , Cromatografia de Afinidade , DNA Complementar/química , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Intestinos/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA , Triatoma/genética
20.
Trends Parasitol ; 26(10): 499-505, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20801082

RESUMO

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease, a devastating disease that disables and leads to the death of many people in Latin America. In this review, factors from the insect vector are described, including digestive enzymes, hemolysins, agglutinins, microbiota and especially antimicrobial factors, which are potentially involved in regulating the development of T. cruzi in the gut. Differential regulation of parasite populations shows that some triatomine defense reactions discriminate not only between molecular signals specific for trypanosome infections but also between different strains of T. cruzi.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Triatominae/fisiologia , Triatominae/parasitologia , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Vetores de Doenças , Humanos , Estágios do Ciclo de Vida , Triatominae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA