Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 659: 114955, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265689

RESUMO

Single-molecule methods, specifically single-molecule counting, convey high sensitivity in research applications. However, single-molecule counting experiments require specialized equipment or consumables to perform. We demonstrate the utility of using bright Streptavidin-Phycoerythrin (SA-PE) conjugates and an epifluorescence microscope, for single-molecule counting applications. In this work, we show that we can visualize single-molecules on glass surfaces, perform single-molecule diagnostic assays on magnetic microparticles, and image individual foci on cell surfaces. This approach is simple and effective for researchers interested in single-molecule counting.


Assuntos
Nanotecnologia , Ficoeritrina , Estreptavidina , Magnetismo
2.
Commun Med (Lond) ; 2: 109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034646

RESUMO

Background: Measuring anti-viral antibody affinity in blood plasma or serum is a rational quantitative approach to assess humoral immune response and acquired protection. Three common vaccines against SARS-CoV-2-Comirnaty developed by Pfizer/BioNTech, Spikevax developed by Moderna/NIAID, and Jcovden (previously Janssen COVID-19 Vaccine) developed by Johnson & Johnson/Janssen (J&J)-induce antibodies to a variety of immunogenic epitopes including the epitopes located in the ACE2 receptor-binding domain (RBD) of the spike protein. Blocking RBD with antibodies interferes with the binding of the virus to ACE2 thus protecting against infection. Methods: We perform measurements in the serum of the recipients of Pfizer, Moderna, and J&J vaccines, and we compare the apparent affinities of vaccine-induced antibodies against the RBD of the ancestral SARS-CoV-2 virus and the Delta and Omicron variants. We use our recently published method to determine the apparent affinity of anti-spike protein antibodies directly in human serum. This involves probing antibody-antigen equilibria with a small number of antigen-coated magnetic microparticles and imaging them on a fluorescence microscope. Results: Recipients of two-dose Pfizer and Moderna vaccines, as well as recipients of the single-dose J&J vaccine, develop high-affinity antibodies toward RBD derived from ancestral SARS-CoV-2. Affinities of these antibodies to Delta-RBD are approximately 10 times weaker, and even more drastically reduced (∼1000-fold) toward Omicron-RBD. Conclusions: Vaccine-induced antibodies against ancestral SARS-CoV-2 RBD demonstrate ~10-fold and ~1000-fold weaker affinities toward Delta- and Omicron-RBD, respectively. Our approach offers a direct means for evaluating vaccine-induced adaptive immunity and can be helpful in designing or updating vaccines.

3.
Nucleic Acids Res ; 50(7): 3911-3921, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35357490

RESUMO

Homologous recombination-deficient cancers rely on DNA polymerase Theta (Polθ)-Mediated End Joining (TMEJ), an alternative double-strand break repair pathway. Polθ is the only vertebrate polymerase that encodes an N-terminal superfamily 2 (SF2) helicase domain, but the role of this helicase domain in TMEJ remains unclear. Using single-molecule imaging, we demonstrate that Polθ-helicase (Polθ-h) is a highly processive single-stranded DNA (ssDNA) motor protein that can efficiently strip Replication Protein A (RPA) from ssDNA. Polθ-h also has a limited capacity for disassembling RAD51 filaments but is not processive on double-stranded DNA. Polθ-h can bridge two non-complementary DNA strands in trans. PARylation of Polθ-h by PARP-1 resolves these DNA bridges. We conclude that Polθ-h removes RPA and RAD51 filaments and mediates bridging of DNA overhangs to aid in polymerization by the Polθ polymerase domain.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA , DNA/química , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
4.
Dev Cell ; 57(2): 277-290.e9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077681

RESUMO

Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.


Assuntos
Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular , Cromatina/genética , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , Optogenética/métodos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Complexo Shelterina/genética , Complexo Shelterina/fisiologia , Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
5.
Chem Sci ; 12(41): 13764-13776, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760161

RESUMO

Protein-DNA interactions play crucial roles in DNA replication across all living organisms. Here, we apply a suite of mass spectrometry (MS) tools to characterize a protein-ssDNA complex, T4 gp32·ssDNA, with results that both support previous studies and simultaneously uncover novel insight into this non-covalent biological complex. Native mass spectrometry of the protein reveals the co-occurrence of Zn-bound monomers and homodimers, while addition of differing lengths of ssDNA generates a variety of protein:ssDNA complex stoichiometries (1 : 1, 2 : 1, 3 : 1), indicating sequential association of gp32 monomers with ssDNA. Ultraviolet photodissociation (UVPD) mass spectrometry allows characterization of the binding site of the ssDNA within the protein monomer via analysis of holo ions, i.e. ssDNA-containing protein fragments, enabling interrogation of disordered regions of the protein which are inaccessible via traditional crystallographic techniques. Finally, two complementary cross-linking (XL) approaches, bottom-up analysis of the crosslinked complexes as well as MS1 analysis of the intact complexes, are used to showcase the absence of ssDNA binding with the intact cross-linked homodimer and to generate two homodimer gp32 model structures which highlight that the homodimer interface overlaps with the monomer ssDNA-binding site. These models suggest that the homodimer may function in a regulatory capacity by controlling the extent of ssDNA binding of the protein monomer. In sum, this work underscores the utility of a multi-faceted mass spectrometry approach for detailed investigation of non-covalent protein-DNA complexes.

6.
Nat Protoc ; 16(11): 5339-5356, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611365

RESUMO

The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells. This protocol describes an optimized workflow for expressing and biophysically characterizing rationally engineered spike proteins in Freestyle 293 and ExpiCHO cell lines. Although we focus on HexaPro, this protocol has been used to purify over a hundred different spike variants in our laboratories. We also provide guidance on expression quality control, long-term storage, and uses in enzyme-linked immunosorbent assays. The entire protocol, from transfection to biophysical characterization, can be completed in 7 d by researchers with basic tissue cell culture and protein purification expertise.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica
7.
Science ; 369(6510): 1501-1505, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32703906

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. We characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting higher expression than its parental construct (by a factor of 10) as well as the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A cryo-electron microscopy structure of HexaPro at a resolution of 3.2 angstroms confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Substituição de Aminoácidos , Betacoronavirus/química , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Microscopia Crioeletrônica , Humanos , Prolina/química , Domínios Proteicos , Estabilidade Proteica , SARS-CoV-2 , Vacinas Virais/química
8.
Proc Natl Acad Sci U S A ; 117(31): 18489-18496, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675237

RESUMO

Synthetic DNA is rapidly emerging as a durable, high-density information storage platform. A major challenge for DNA-based information encoding strategies is the high rate of errors that arise during DNA synthesis and sequencing. Here, we describe the HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) error-correcting code that repairs all three basic types of DNA errors: insertions, deletions, and substitutions. HEDGES also converts unresolved or compound errors into substitutions, restoring synchronization for correction via a standard Reed-Solomon outer code that is interleaved across strands. Moreover, HEDGES can incorporate a broad class of user-defined sequence constraints, such as avoiding excess repeats, or too high or too low windowed guanine-cytosine (GC) content. We test our code both via in silico simulations and with synthesized DNA. From its measured performance, we develop a statistical model applicable to much larger datasets. Predicted performance indicates the possibility of error-free recovery of petabyte- and exabyte-scale data from DNA degraded with as much as 10% errors. As the cost of DNA synthesis and sequencing continues to drop, we anticipate that HEDGES will find applications in large-scale error-free information encoding.


Assuntos
DNA/genética , Mutação INDEL , Replicação do DNA , Armazenamento e Recuperação da Informação , Modelos Estatísticos
9.
Nucleic Acids Res ; 48(14): 7834-7843, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32621611

RESUMO

RADX is a mammalian single-stranded DNA-binding protein that stabilizes telomeres and stalled replication forks. Cellular biology studies have shown that the balance between RADX and Replication Protein A (RPA) is critical for DNA replication integrity. RADX is also a negative regulator of RAD51-mediated homologous recombination at stalled forks. However, the mechanism of RADX acting on DNA and its interactions with RPA and RAD51 are enigmatic. Using single-molecule imaging of the key proteins in vitro, we reveal that RADX condenses ssDNA filaments, even when the ssDNA is coated with RPA at physiological protein ratios. RADX compacts RPA-coated ssDNA filaments via higher-order assemblies that can capture ssDNA in trans. Furthermore, RADX blocks RPA displacement by RAD51 and prevents RAD51 loading on ssDNA. Our results indicate that RADX is an ssDNA condensation protein that inhibits RAD51 filament formation and may antagonize other ssDNA-binding proteins on RPA-coated ssDNA.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/metabolismo , Humanos , Proteína de Replicação A/metabolismo , Imagem Individual de Molécula
10.
bioRxiv ; 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32577660

RESUMO

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion protein that is metastable and difficult to produce recombinantly in large quantities. Here, we designed and expressed over 100 structure-guided spike variants based upon a previously determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical and structural characterization of these variants identified numerous individual substitutions that increased protein yields and stability. The best variant, HexaPro, has six beneficial proline substitutions leading to ~10-fold higher expression than its parental construct and is able to withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.

11.
Cell Rep ; 29(5): 1351-1368.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665645

RESUMO

RNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with human disease. Although recent studies have systematically identified individual RNA-binding proteins, their higher-order assembly into ribonucleoprotein (RNP) complexes has not been systematically investigated. Here, we describe a proteomics method for systematic identification of RNP complexes in human cells. We identify 1,428 protein complexes that associate with RNA, indicating that more than 20% of known human protein complexes contain RNA. To explore the role of RNA in the assembly of each complex, we identify complexes that dissociate, change composition, or form stable protein-only complexes in the absence of RNA. We use our method to systematically identify cell-type-specific RNA-associated proteins in mouse embryonic stem cells and finally, distribute our resource, rna.MAP, in an easy-to-use online interface (rna.proteincomplexes.org). Our system thus provides a methodology for explorations across human tissues, disease states, and throughout all domains of life.


Assuntos
Complexos Multiproteicos/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Fracionamento Celular , Células HEK293 , Humanos , Camundongos , Conformação de Ácido Nucleico , Proteoma/metabolismo , RNA/química , Proteína de Replicação C/metabolismo , Reprodutibilidade dos Testes
12.
Methods Enzymol ; 616: 43-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691654

RESUMO

Fluorescent labeling of proteins is a critical requirement for single-molecule imaging studies. Many protein labeling strategies require harsh conditions or large epitopes that can inactivate the target protein, either by decreasing the protein's enzymatic activity or by blocking protein-protein interactions. Here, we provide a detailed protocol to efficiently label CRISPR-Cas complexes with a small fluorescent peptide via sortase-mediated transpeptidation. The sortase tag consists of just a few amino acids that are specifically recognized at either the N- or the C-terminus, making this strategy advantageous when the protein is part of a larger complex. Sortase is active at high ionic strength, 4°C, and with a broad range of organic fluorophores. We discuss the design, optimization, and single-molecule fluorescent imaging of CRISPR-Cas complexes on DNA curtains. Sortase-mediated transpeptidation is a versatile addition to the protein labeling toolkit.


Assuntos
Proteínas Associadas a CRISPR/análise , Sistemas CRISPR-Cas , Cisteína Endopeptidases/análise , Proteínas de Escherichia coli/análise , Escherichia coli/química , Corantes Fluorescentes/análise , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/citologia , Modelos Moleculares , Imagem Óptica/métodos , Coloração e Rotulagem/métodos
13.
Langmuir ; 34(49): 14882-14890, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30044093

RESUMO

Single-stranded DNA (ssDNA) is a critical intermediate in all DNA transactions. Because ssDNA is more flexible than double-stranded (ds) DNA, interactions with ssDNA-binding proteins (SSBs) may significantly compact or elongate the ssDNA molecule. Here, we develop and characterize low-complexity ssDNA curtains, a high-throughput single-molecule assay to simultaneously monitor protein binding and correlated ssDNA length changes on supported lipid bilayers. Low-complexity ssDNA is generated via rolling circle replication of short synthetic oligonucleotides, permitting control over the sequence composition and secondary structure-forming propensity. One end of the ssDNA is functionalized with a biotin, while the second is fluorescently labeled to track the overall DNA length. Arrays of ssDNA molecules are organized at microfabricated barriers for high-throughput single-molecule imaging. Using this assay, we demonstrate that E. coli SSB drastically and reversibly compacts ssDNA templates upon changes in NaCl concentration. We also examine the interactions between a phosphomimetic RPA and ssDNA. Our results indicate that RPA-ssDNA interactions are not significantly altered by these modifications. We anticipate that low-complexity ssDNA curtains will be broadly useful for single-molecule studies of ssDNA-binding proteins involved in DNA replication, transcription, and repair.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Replicação A/metabolismo , Fagos Bacilares/enzimologia , Sequência de Bases , DNA de Cadeia Simples/síntese química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescência , Proteínas de Fluorescência Verde/química , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Proteína de Replicação A/química , Cloreto de Sódio/química
14.
Methods Enzymol ; 592: 259-281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668123

RESUMO

Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ensaios de Triagem em Larga Escala/instrumentação , Ácidos Nucleicos Imobilizados/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Microtecnologia/métodos , Nucleoproteínas/metabolismo , Imagem Óptica/instrumentação , Animais , Proteínas de Ligação a DNA/análise , Difusão , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ácidos Nucleicos Imobilizados/química , Técnicas Analíticas Microfluídicas/métodos , Nucleoproteínas/análise , Imagem Óptica/métodos , Reparo de DNA por Recombinação , Raios Ultravioleta
15.
J Am Chem Soc ; 137(49): 15366-9, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26629885

RESUMO

Hapalindoles are bioactive indole alkaloids with fascinating polycyclic ring systems whose biosynthetic assembly mechanism has remained unknown since their initial discovery in the 1980s. In this study, we describe the fam gene cluster from the cyanobacterium Fischerella ambigua UTEX 1903 encoding hapalindole and ambiguine biosynthesis along with the characterization of two aromatic prenyltransferases, FamD1 and FamD2, and a previously undescribed cyclase, FamC1. These studies demonstrate that FamD2 and FamC1 act in concert to form the tetracyclic core ring system of the hapalindoles from cis-indole isonitrile and geranyl pyrophosphate through a presumed biosynthetic Cope rearrangement and subsequent 6-exo-trig cyclization/electrophilic aromatic substitution reaction.


Assuntos
Alcaloides Indólicos/metabolismo , Sequência de Aminoácidos , Cianobactérias/genética , Alcaloides Indólicos/química , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica/genética
16.
Protein J ; 33(5): 447-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194846

RESUMO

D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose 5-phosphate and D-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-ß-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.


Assuntos
Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Listeria monocytogenes/enzimologia , Aldose-Cetose Isomerases , Sequência de Aminoácidos , Proteínas de Escherichia coli , Listeria monocytogenes/genética , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA