Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadi9325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416832

RESUMO

Climate change-induced precipitation anomalies during extremely wet years (EWYs) result in substantial nitrogen losses to aquatic ecosystems (Nw). Still, the extent and drivers of these losses, and effective mitigation strategies have remained unclear. By integrating global datasets with well-established crop modeling and machine learning techniques, we reveal notable increases in Nw, ranging from 22 to 56%, during historical EWYs. These pulses are projected to amplify under the SSP126 (SSP370) scenario to 29 to 80% (61 to 120%) due to the projected increases in EWYs and higher nitrogen input. We identify the relative precipitation difference between two consecutive years (diffPr) as the primary driver of extreme Nw. This finding forms the basis of the CLimate Extreme Adaptive Nitrogen Strategy (CLEANS), which scales down nitrogen input adaptively to diffPr, leading to a substantial reduction in extreme Nw with nearly zero yield penalty. Our results have important implications for global environmental sustainability and while safeguarding food security.

2.
Sci Rep ; 12(1): 1638, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102220

RESUMO

Almost half of the Burkinabe population is moderately or severely affected by food insecurity. With climate change, domestic food production may become more under pressure, further jeopardizing food security. In this study, we focus on the production of maize, sorghum and millet as staple cereal crops in Burkina Faso to assess food availability as one component of food security. Based on a statistical weather-driven crop model, we provide a within-season forecast of crop production 1 month before the harvest. Hindcast results from 1984 to 2018 produce an r2 of 0.95 in case of known harvest areas and an r2 of 0.88 when harvest areas are modelled instead. We compare actually supplied calories with those usually consumed from staple crops, allowing us to provide early information on shortages in domestic cereal production on the national level. Despite the-on average-sufficient domestic cereal production from maize, sorghum and millet, a considerable level of food insecurity prevails for large parts of the population. We suggest to consider such forecasts as an early warning signal for shortages in domestic staple crop production and encourage a comprehensive assessment of all dimensions of food security to rapidly develop counteractions for looming food crises.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Insegurança Alimentar , Abastecimento de Alimentos , Milhetes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Burkina Faso , Mudança Climática , Previsões , Humanos , Modelos Teóricos , Fatores de Tempo , Tempo (Meteorologia)
3.
Sci Data ; 9(1): 38, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115538

RESUMO

Agricultural performance is influenced by environmental conditions, management decisions and economic circumstances. It is important to quantify their respective contribution to allow for detecting major hazards to production, projecting future yields under climate change and deriving adaptation options. For this purpose, time series of agricultural yields with high spatial and long-term temporal resolution are a primary requisite. Here we present a data set of crop performance in France, one of Europe's major crop producers. The data set comprises ten crops (barley, maize, oats, potatoes, rapeseed, sugarbeet, sunflower, durum wheat, soft wheat and wine) and covers the years 1900 to 2018. It contains harvested area, production and yield data for all 96 French départements (i.e. counties or NUTS3 level) with a total number of 375,264 data points. Entries until 1988 have been digitized manually from statistical yearbooks. The technical validation indicates a high consistency of the data set within itself and with external resources. The data set may contribute to an enhanced understanding of the manifold influences on agricultural performance.

4.
Sci Rep ; 10(1): 19650, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184303

RESUMO

Seasonal yield forecasts are important to support agricultural development programs and can contribute to improved food security in developing countries. Despite their importance, no operational forecasting system on sub-national level is yet in place in Tanzania. We develop a statistical maize yield forecast based on regional yield statistics in Tanzania and climatic predictors, covering the period 2009-2019. We forecast both yield anomalies and absolute yields at the sub-national scale about 6 weeks before the harvest. The forecasted yield anomalies (absolute yields) have a median Nash-Sutcliffe efficiency coefficient of 0.72 (0.79) in the out-of-sample cross validation, which corresponds to a median root mean squared error of 0.13 t/ha for absolute yields. In addition, we perform an out-of-sample variable selection and produce completely independent yield forecasts for the harvest year 2019. Our study is potentially applicable to other countries with short time series of yield data and inaccessible or low quality weather data due to the usage of only global climate data and a strict and transparent assessment of the forecasting skill.


Assuntos
Agricultura/tendências , Bases de Dados Factuais/estatística & dados numéricos , Previsões , Estações do Ano , Tempo (Meteorologia) , Zea mays/crescimento & desenvolvimento , Modelos Teóricos , Tanzânia
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190510, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892735

RESUMO

Extreme weather increases the risk of large-scale crop failure. The mechanisms involved are complex and intertwined, hence undermining the identification of simple adaptation levers to help improve the resilience of agricultural production. Based on more than 82 000 yield data reported at the regional level in 17 European countries, we assess how climate affected the yields of nine crop species. Using machine learning models, we analyzed historical yield data since 1901 and then focus on 2018, which has experienced a multiplicity and a diversity of atypical extreme climatic conditions. Machine learning models explain up to 65% of historical yield anomalies. We find that both extremes in temperature and precipitation are associated with negative yield anomalies, but with varying impacts in different parts of Europe. In 2018, Northern and Eastern Europe experienced multiple and simultaneous crop failures-among the highest observed in recent decades. These yield losses were associated with extremely low rainfalls in combination with high temperatures between March and August 2018. However, the higher than usual yields recorded in Southern Europe-caused by favourable spring rainfall conditions-nearly offset the large decrease in Northern European crop production. Our results outline the importance of considering single and compound climate extremes to analyse the causes of yield losses in Europe. We found no clear upward or downward trend in the frequency of extreme yield losses for any of the considered crops between 1990 and 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Mudança Climática , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Clima Extremo , Europa (Continente) , Especificidade da Espécie
6.
PLoS One ; 15(6): e0229881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598391

RESUMO

Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81-0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.


Assuntos
Mudança Climática , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Alimentos , Estudos de Viabilidade , Gana , Modelos Estatísticos
7.
Sci Rep ; 8(1): 16865, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442973

RESUMO

France is a major crop producer, with a production share of approx. 20% within the European Union. Yet, a discussion has recently started whether French yields are stagnating. While for wheat previous results are unanimously pointing to recent stagnation, there is contradictory evidence for maize and few to no results for other crops. Here we analyse a data set with more than 120,000 yield observations from 1900 to 2016 for ten crops (barley, durum and soft wheat, maize, oats, potatoes, rapeseed, sugar beet, sunflower and wine) in the 96 mainland French départements (NUTS3 administrative division). We dissect the evolution of yield trends over time and space, analyse yield variation and evaluate whether growth of yields has stalled in recent years. Yields have, on average across crops, multiplied four-fold over the course of the 20th century. While absolute yield variability has increased, the variation relative to the mean has halved - mean yields have increased faster than their variability. But growth of yields has stagnated since the 1990's for winter wheat, barley, oats, durum wheat, sunflower and wine on at least 25% of their areas. Reaching yield potentials is unlikely as a cause for stagnation. Maize, in contrast, shows no evidence for stagnation.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Análise por Conglomerados , França , Geografia , Fatores de Tempo
8.
Glob Chang Biol ; 23(11): 4750-4764, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464336

RESUMO

Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical prerequisites to guide adaptation under climate change.


Assuntos
Mudança Climática , Produção Agrícola/tendências , Glycine max/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Produção Agrícola/estatística & dados numéricos , Modelos Teóricos , Estações do Ano , Estados Unidos , Tempo (Meteorologia)
9.
Nat Commun ; 8: 13931, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102202

RESUMO

High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

10.
Earths Future ; 5(6): 605-616, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30377624

RESUMO

Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the US. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

11.
Nature ; 535(7611): 299-302, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411635

RESUMO

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA1/metabolismo , Células Mieloides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Eritrócitos/citologia , Retroalimentação Fisiológica , Feminino , Genes Reporter , Granulócitos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Megacariócitos/citologia , Camundongos , Modelos Biológicos , Monócitos/citologia , Reprodutibilidade dos Testes , Análise de Célula Única , Processos Estocásticos
13.
Blood ; 128(9): 1181-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365423

RESUMO

The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Tempo
14.
Nat Cell Biol ; 17(10): 1235-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26389663

RESUMO

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular/genética , Rastreamento de Células/métodos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Fatores de Transcrição/metabolismo , Transdução Genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA