Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4360, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896536

RESUMO

Ultra-violet (UV) light has still a limited scope in optical microscopy despite its potential advantages over visible light in terms of optical resolution and of interaction with a wide variety of biological molecules. The main challenge is to control in a robust, compact and cost-effective way UV light beams at the level of a single optical spatial mode and concomitantly to minimize the light propagation loss. To tackle this challenge, we present here photonic integrated circuits made of aluminum oxide thin layers that are compatible with both UV light and high-volume manufacturing. These photonic circuits designed at a wavelength of 360 nm enable super-resolved structured illumination microscopy with conventional wide-field microscopes and without modifying the usual protocol for handling the object to be imaged. As a biological application, we show that our UV photonic chips enable to image the autofluorescence of yeast cells and reveal features unresolved with standard wide-field microscopy.


Assuntos
Iluminação , Microscopia , Luz , Microscopia/métodos , Fótons
2.
Biomacromolecules ; 23(3): 1366-1375, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35147420

RESUMO

Acrylate-based photo-cross-linked poly(ε-caprolactone) (PCL) tends to show low elongation and strength. Incorporation of osteo-inductive hydroxyapatite (HAp) further enhances this effect, which limits its applicability in bone tissue engineering. To overcome this, the thiol-ene click reaction is introduced for the first time in order to photo-cross-link PCL composites with 0, 10, 20, and 30 wt % HAp nanoparticles. It is demonstrated that the elongation at break and ultimate strength increase 10- and 2-fold, respectively, when the photopolymerization mechanism is shifted from a radical chain-growth (i.e., acrylate cross-linking) toward a radical step-growth polymerization (i.e., thiol-ene cross-linking). Additionally, it is illustrated that osteoblasts can attach to and proliferate on the surface of the photo-cross-linked PCL-HAp composites. Finally, the incorporation of HAp nanoparticles is shown to reduce the ALP activity of osteoblasts. Overall, thiol-ene cross-linked PCL-HAp composites can be considered as promising potential materials for bone tissue engineering.


Assuntos
Durapatita , Engenharia Tecidual , Poliésteres , Compostos de Sulfidrila , Alicerces Teciduais
3.
Macromol Biosci ; 18(7): e1800125, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29900675

RESUMO

In vascular tissue engineering, great attention is paid to the immobilization of biomolecules onto synthetic grafts to increase bio- and hemocompatibility-two critical milestones in the field. The surface modification field of poly(ethylene terephthalate) (PET), a well-known vascular-graft material, is matured and oversaturated. Nevertheless, most developed methods are laborious multistep procedures generally accompanied by coating instability or toxicity issues. Herein, a straightforward surface modification procedure is presented engineered to simultaneously promote surface endothelialization and anticoagulation properties via the covalent immobilization of gelatin through a photoactivated azide derivative. A complete physicochemical characterization and biological study including cytotoxicity and endotoxin testing are performed. In addition, biocompatibility toward small (diameter ≤ 6 mm) and/or large caliber (diameter ≥ 6 mm) vessels is assessed by micro- and macrovascular endothelial cell assays. Superior bio- and hemocompatibility properties are seen for the gelatin-covalently modified PET surfaces compared to the conventional surface-modification procedures based on physisorption.


Assuntos
Anticoagulantes/química , Materiais Biocompatíveis/química , Gelatina/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Polietilenotereftalatos/química , Anticoagulantes/farmacologia , Azidas/química , Materiais Biocompatíveis/farmacologia , Biomarcadores/metabolismo , Prótese Vascular , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Selectina E/genética , Selectina E/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Polietilenotereftalatos/farmacologia , Propriedades de Superfície , Engenharia Tecidual/métodos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
4.
J Tissue Eng Regen Med ; 12(8): 1825-1834, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29701014

RESUMO

Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO3 is a widely used bone regeneration material, and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration. In this study, gellan gum hydrogels were mineralized with carbonates containing different amounts of calcium (Ca) and magnesium (Mg) by alternate soaking in, firstly, a calcium and/or magnesium ion solution and, secondly, a carbonate ion solution. This alternate soaking cycle was repeated five times. Five different calcium and/or magnesium ion solutions, containing different molar ratios of Ca to Mg ranging from Mg free to Ca free were compared. Carbonate mineral formed in all sample groups subjected to the alternate soaking cycle. Ca : Mg elemental ratio in the mineral formed was higher than in the respective mineralizing solution. Mineral formed in the absence of Mg was predominantly CaCO3 in the form of a mixture of calcite and vaterite. Increasing the Mg content in the mineral formed led to the formation of magnesian calcite and decreased the total amount of the mineral formed and its crystallinity. Hydrogel mineralization and increasing Mg content in mineral formed did not obviously improve proliferation of MC3T3-E1 osteoblast-like cells or differentiation after 7 days.


Assuntos
Carbonato de Cálcio/química , Hidrogéis/química , Magnésio/química , Polissacarídeos Bacterianos/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Hidrogéis/farmacologia , Teste de Materiais , Camundongos , Osteoblastos/metabolismo , Polissacarídeos Bacterianos/farmacologia
5.
Anal Chem ; 89(19): 10617-10624, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28877438

RESUMO

A novel 3D elemental and morphological analysis approach is presented combining X-ray computed tomography (µCT), X-ray fluorescence (XRF) tomography, and confocal XRF analysis in a single laboratory instrument (Herakles). Each end station of Herakles (µCT, XRF-CT, and confocal XRF) represents the state-of-the-art of currently available laboratory techniques. The integration of these techniques enables linking the (quantitative) spatial distribution of chemical elements within the investigated materials to their three-dimensional (3D) internal morphology/structure down to 1-10 µm resolution level, which has not been achieved so-far using laboratory X-ray techniques. The concept of Herakles relies strongly on its high precision (around 100 nm) air-bearing motor system that connects the different end-stations, allowing combined measurements based on the above X-ray techniques while retaining the coordinate system. In-house developed control and analysis software further ensures a smooth integration of the techniques. Case studies on a Cu test pattern, a Daphnia magna model organism and a perlite biocatalyst support material demonstrate the attainable resolution, elemental sensitivity of the instrument, and the strength of combining these three complementary methodologies.

6.
J Tissue Eng Regen Med ; 11(12): 3556-3566, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28569438

RESUMO

Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO3 , Mg-enriched CaCO3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg5 (CO3 )4 (OH)2 .4H2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Carbonato de Cálcio/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Magnésio/farmacologia , Polissacarídeos Bacterianos/farmacologia , Urease/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
7.
Biomed Mater ; 12(2): 025015, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28223552

RESUMO

Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum (GG), an anionic polysaccharide, to form injectable hydrogel-microparticle composites, containing Zn, Ca and Mg. Zn and Ca were incorporated into microparticle preparations to a greater extent than Mg. Microparticle groups were heterogeneous and contained microparticles of differing shape and elemental composition. Zn-rich microparticles were 'star shaped' and appeared to consist of small crystallites, while Zn-poor, Ca- and Mg-rich microparticles were irregular in shape and appeared to contain lager crystallites. Zn-free microparticle groups exhibited the best cytocompatibility and, unexpectedly, Zn-free composites showed the highest antibacterial activity towards methicilin-resistant Staphylococcus aureus. Composites containing Zn-free microparticles were cytocompatible and therefore appear most suitable for applications as an injectable biomaterial. This study proves the principle of creating bi- and tri-elemental microparticles to induce the gelation of GG to create injectable hydrogel-microparticle composites.


Assuntos
Materiais Biocompatíveis/química , Carbonatos/química , Regeneração , Engenharia Tecidual/métodos , Células 3T3 , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/administração & dosagem , Carbonato de Cálcio/química , Hidrogéis/química , Injeções , Magnésio/química , Teste de Materiais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Microscopia Eletrônica , Osteoblastos/citologia , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Reologia , Difração de Raios X , Compostos de Zinco/química
8.
J Tissue Eng Regen Med ; 11(5): 1500-1513, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26076675

RESUMO

Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the absence of osteogenic growth factors. To realize this, natural enzyme alkaline phosphatase (ALP) was incorporated into uncrosslinked chitosan scaffolds. The uncrosslinked chitosan makes available amine and alcohol functionalities to enhance the biomineralization process. The physicochemical findings revealed homogeneous mineralization, with the phase structure of the formed minerals resembling that of apatite at low mineral concentrations, and similar to dicalcium phosphate dihydrate (DCPD) with increasing ALP content. The MC3T3 cell activity clearly showed that the mineralization of the chitosan scaffolds was effective in improving cellular adhesion, proliferation and colonization. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Quitosana/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Camundongos
9.
J Tissue Eng Regen Med ; 11(5): 1610-1618, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26174042

RESUMO

Gellan gum hydrogels functionalized with alkaline phosphatase were enzymatically mineralized with phosphates in mineralization medium containing calcium (Ca) and zinc (Zn) to improve their suitability as biomaterials for bone regeneration. The aims of the study were to endow mineralized hydrogels with antibacterial activity by incorporation of Zn in the inorganic phase, and to investigate the effect of Zn incorporation on the amount and type of mineral formed, the compressive modulus of the mineralized hydrogels and on their ability to support adhesion and growth of MC3T3-E1 osteoblast-like cells. Mineralization medium contained glycerophosphate (0.05 m) and three different molar Ca:Zn ratios, 0.05:0, 0.04:0.01 and 0.025:0.025 (all mol/dm3 ), hereafter referred to as A, B and C, respectively. FTIR, SAED and TEM analysis revealed that incubation for 14 days caused the formation of predominantly amorphous mineral phases in sample groups A, B and C. The presence of Zn in sample groups B and C was associated with a drop in the amount of mineral formed and a smaller mineral deposit morphology, as observed by SEM. ICP-OES revealed that Zn was preferentially incorporated into mineral compared to Ca. Mechanical testing revealed a decrease in compressive modulus in sample group C. Sample groups B and C, but not A, showed antibacterial activity against biofilm-forming, methicillin-resistant Staphylococcus aureus. All sample groups supported cell growth. Zn incorporation increased the viable cell number. The highest values were seen on sample group C. In conclusion, the sample group containing the most Zn, i.e. group C, appears to be the most promising. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Antibacterianos , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio , Hidrogéis , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Osteoblastos/metabolismo , Fosfatos , Polissacarídeos Bacterianos , Compostos de Zinco , Animais , Antibacterianos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Osteoblastos/citologia , Fosfatos/química , Fosfatos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Compostos de Zinco/química , Compostos de Zinco/farmacologia
10.
Biomed Mater ; 11(6): 065011, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869102

RESUMO

The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca2+ and Mg2+ from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca2+ and Mg2+ and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.


Assuntos
Regeneração Óssea , Cálcio/química , Hidrogéis/química , Magnésio/química , Polissacarídeos Bacterianos/química , Materiais Biocompatíveis/química , Carbonato de Cálcio/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Íons , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microtomografia por Raio-X
11.
Macromol Biosci ; 16(11): 1678-1692, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500500

RESUMO

Biocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug-eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)-derived polymers are investigated as coatings for metallic stents. All pre-polymers reveal a low molecular weight between 3000 and 18 000 g mol-1 . The cured polymers range from flexible to more rigid, with E-modulus between 0.6 and 3.8 MPa. Their advantages include straightforward synthesis, biodegradability, easy processing through different scaffolding techniques, and easy transfer to industrial production. Furthermore, electrospraying and dip-coating procedures are used as proof-of-concept to create coatings on metallic stents. Biocompatibility tests using adipose stem cells lead to promising results for the use of these materials as coatings for metallic coronary stents.


Assuntos
Tecido Adiposo/metabolismo , Materiais Revestidos Biocompatíveis , Stents Farmacológicos , Teste de Materiais , Polímeros , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Adulto , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Polímeros/química , Polímeros/farmacologia , Células-Tronco/citologia
12.
Biomacromolecules ; 17(1): 56-68, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26568299

RESUMO

Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.


Assuntos
Gelatina/química , Indóis/química , Metacrilatos/química , Polímeros/química , Equipamentos e Provisões , Polietilenoglicóis/química , Polimetil Metacrilato/química , Embalagem de Produtos/métodos , Propriedades de Superfície
13.
J Tissue Eng Regen Med ; 10(11): 938-954, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-24616374

RESUMO

Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm3 , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Calcificação Fisiológica , Fosfatos de Cálcio/química , Hidrogéis/química , Compostos de Magnésio/química , Osteoblastos/metabolismo , Fosfatos/química , Polissacarídeos Bacterianos/química , Engenharia Tecidual , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Osteoblastos/citologia , Células RAW 264.7
14.
Colloids Surf B Biointerfaces ; 134: 113-21, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26163974

RESUMO

An aqueous-based bio-inspired approach was applied to chemically bind a bio compatible and cell-interactive gelatin layer on poly(ethylene terephthalate) (PET) for cardiovascular applications. The protein layer was immobilized after an initial surface activation via a dopamine coating. The individual and synergetic effect of the dopamine deposition procedure and the substrate nature (pristine versus plasma-treated) was investigated via XPS, AFM, SEM and contact angle measurements. Dependent on the applied parameters, the post dopamine coating presented various surface roughnesses ranging between 96 nm and 210 nm. Subsequent gelatin immobilization mostly induced a smoothening effect, but the synergetic influence of the deposition protocol and plasma treatment resulted in different gelatin conformations. In addition, a comprehensive comparative study between chemically-modified (via dopamine) and physically-modified (physisorption) PET with gelatin was developed within the present study. All investigated samples were submitted to preliminary haemocompatibility tests, which clearly indicated the direct link between blood platelet behaviour and final protein arrangement.


Assuntos
Gelatina/química , Tomografia por Emissão de Pósitrons , Plaquetas/citologia , Doenças Cardiovasculares/terapia , Adesão Celular , Materiais Revestidos Biocompatíveis , Dopamina/administração & dosagem , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície
15.
Biomed Mater ; 9(4): 045014, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25065649

RESUMO

Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.


Assuntos
Antibacterianos/química , Cimentos Ósseos/química , Osso e Ossos/efeitos dos fármacos , Cerâmica/química , Hidrogéis/química , Polissacarídeos Bacterianos/química , Engenharia Tecidual/métodos , Animais , Fosfatos de Cálcio/química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Força Compressiva , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Transição de Fase , Polímeros/química , Ratos , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Difração de Raios X , Microtomografia por Raio-X
16.
Appl Opt ; 53(12): 2638-45, 2014 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-24787590

RESUMO

The fast-growing market of organic electronics stimulates the development of versatile technologies for structuring thin-film materials. Ultraviolet lasers have proven their full potential for patterning organic thin films, but only a few studies report on interaction with thin-film barrier layers. In this paper, we present an approach in which the laser patterning process is optimized together with the barrier film, leading to a highly selective patterning technology without introducing barrier damage. This optimization is crucial, as the barrier damage would lead to moisture and oxygen ingress, with accelerated device degradation as a result. Following process optimization, a laser processed flexible organic LED has been fabricated and thin-film encapsulated and its operation is shown for the first time in atmospheric conditions.

17.
J Biomed Mater Res A ; 102(11): 3918-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24375970

RESUMO

Various types of nanofibers are increasingly used in tissue engineering, mainly for their ability to mimic the architecture of tissue at the nanoscale. We evaluated the adhesion, growth, viability, and differentiation of human osteoblast-like MG 63 cells on polylactide (PLA) nanofibers prepared by needle-less electrospinning and loaded with 5 or 15 wt % of hydroxyapatite (HA) nanoparticles. On day 7 after seeding, the cell number was the highest on samples with 15 wt % of HA. This result was confirmed by the XTT test, especially after dynamic cultivation, when the number of metabolically active cells on these samples was even higher than on control polystyrene. Staining with a live/dead kit showed that the viability of cells on all nanofibrous scaffolds was very high and comparable to that on control polystyrene dishes. An enzyme-linked immunosorbent assay revealed that the concentration of osteocalcin was also higher in cells on samples with 15 wt % of HA. There was no immune activation of cells (measured by production of TNF-alpha), associated with the incorporation of HA. Moreover, the addition of HA suppressed the creep behavior of the scaffolds in their dry state. Thus, nanofibrous PLA scaffolds have potential for bone tissue engineering, particularly those with 15 wt % of HA.


Assuntos
Diferenciação Celular , Durapatita/química , Nanofibras/química , Osteoblastos/metabolismo , Poliésteres/química , Substitutos Ósseos , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Humanos , Osteoblastos/citologia , Osteocalcina/biossíntese , Engenharia Tecidual/métodos
18.
Biomed Mater ; 8(5): 055001, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23945076

RESUMO

Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were mineralized enzymatically with calcium phosphate (CaP) by the incorporation of alkaline phosphatase (ALP) followed by incubation for 3 days in solutions of either 0.1 M calcium glycerophosphate (CaGP) or a combination of CaGP and magnesium glycerophosphate (CaGP:MgGP; both 0.05 M), resulting in the formation of two different PRF-mineral composites. Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction examinations showed that the CaP formed was amorphous. Inductively coupled plasma optical emission spectroscopy analysis revealed similar amounts of Ca and P in both composite types, while a smaller amount of Mg (Ca:Mg molar ratio = 10) was detected in the composites formed in the CaGP:MgGP solution, which was supported by the results of energy-dispersive x-ray spectroscopy-based elemental mapping. Scanning electron microscopy (SEM) imaging showed that the mineral deposits in PRF incubated in the CaGP:MgGP solution were markedly smaller. The mass percentage attributable to the mineral phase was similar in both composite types. MTT and WST tests with SAOS-2 cells revealed that incubation in the CaGP:MgGP solution had no negative effect on cytocompatibility and cell proliferation compared to the CaGP solution. Cells on all samples displayed a well-spread morphology as revealed by SEM imaging. In conclusion, the incorporation of Mg reduces mineral deposit dimensions and promotes cell proliferation.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Substitutos Ósseos/química , Fibrina/química , Magnésio/química , Fosfatase Alcalina/metabolismo , Linhagem Celular Tumoral , Glicerofosfatos/química , Humanos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio , Tiazóis
19.
Int J Biol Macromol ; 56: 122-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23403025

RESUMO

Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (ß-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to acceleration of gelation upon increase of temperature for four different chitosan preparations of differing molecular weight, as demonstrated by rheometric time sweeps at 37 °C. Hydrogels containing ALP were subsequently incubated in calcium glycerophosphate (Ca-GP) solution to induce their mineralization with calcium phosphate (CaP) in order to improve their suitability as materials for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP mineral, as confirmed by SEM, FTIR, Raman spectroscopy, XRD, ICP-OES, and increases in dry mass percentage, which rose with increasing ALP concentration and incubation time in Ca-GP solution. The results demonstrate that ALP accelerates formation of thermosensitive chitosan/ß-GP hydrogels and induces their mineralization with CaP, which paves the way for applications as injectable bone replacement materials.


Assuntos
Fosfatase Alcalina/metabolismo , Quitosana/química , Hidrogéis/química , Minerais/química , Acetilação/efeitos dos fármacos , Animais , Fosfatos de Cálcio/farmacologia , Liofilização , Microscopia Eletrônica de Varredura , Peso Molecular , Reologia/efeitos dos fármacos , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Fatores de Tempo , Difração de Raios X
20.
Macromol Biosci ; 12(8): 1077-89, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22648976

RESUMO

Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG/fumaric acid copolymer OPF. After incubation in Ca-GP solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES, and von Kossa staining confirm CaP formation. The amount of mineral formed decreases in the order cPEG > collagen > OPF. The mineral:polymer ratio decreases in the order collagen > cPEG > OPF. Mineralization increases Young's modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel/CaP composites may find application as bone regeneration materials.


Assuntos
Fosfatase Alcalina/química , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Colágeno Tipo I/química , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/metabolismo , Osso e Ossos/química , Calcificação Fisiológica , Módulo de Elasticidade , Fumaratos/química , Humanos , Hidrogéis , Teste de Materiais , Microscopia Eletrônica de Varredura , Polietilenoglicóis/química , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA