Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Rep ; 43(6): 114289, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38833371

RESUMO

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.

4.
J Immunol ; 211(4): 693-705, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37395687

RESUMO

Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), ß2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.


Assuntos
Apresentação de Antígeno , Fibrossarcoma , Humanos , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma , Linfócitos T CD8-Positivos , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I
5.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37279645

RESUMO

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Assuntos
Glioblastoma , Piruvato Quinase , Humanos , Piruvato Quinase/metabolismo , Glioblastoma/metabolismo , Antioxidantes , Isoformas de Proteínas , Glucose/metabolismo , Linhagem Celular Tumoral
7.
Prostate Cancer Prostatic Dis ; 26(1): 207-209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058580

RESUMO

BACKGROUND: Radiotherapy impacts the local immune response to cancers. Prostate Stereotactic Body Radiotherapy (SBRT) is a highly focused method to deliver radiotherapy often used to treat prostate cancer. This is the first direct comparison of immune cells within prostate cancers before and after SBRT in patients. METHODS: Prostate cancers before and 2 weeks after SBRT are interrogated by multiplex immune fluorescence targeting various T cells and macrophages markers and analyzed by cell and pixel density, as part of a clinical trial of SBRT neoadjuvant to radical prostatectomy. RESULTS: Two weeks after SBRT, CD68, and CD163 macrophages are significantly increased while CD8 T cells are decreased. SBRT markedly alters the immune environment within prostate cancers.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Masculino , Humanos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Radiocirurgia/métodos , Próstata/patologia , Linfócitos T CD8-Positivos , Contagem de Células
8.
Toxics ; 10(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548630

RESUMO

Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.

9.
Front Oncol ; 12: 1045016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439420

RESUMO

Total body irradiation (TBI) is a commonly used conditioning regimen for hematopoietic stem cell transplant (HCT), but dose heterogeneity and long-term organ toxicity pose significant challenges. Total marrow irradiation (TMI), an evolving radiation conditioning regimen for HCT can overcome the limitations of TBI by delivering the prescribed dose targeted to the bone marrow (BM) while sparing organs at risk. Recently, our group demonstrated that TMI up to 20 Gy in relapsed/refractory AML patients was feasible and efficacious, significantly improving 2-year overall survival compared to the standard treatment. Whether such dose escalation is feasible in elderly patients, and how the organ toxicity profile changes when switching to TMI in patients of all ages are critical questions that need to be addressed. We used our recently developed 3D image-guided preclinical TMI model and evaluated the radiation damage and its repair in key dose-limiting organs in young (~8 weeks) and old (~90 weeks) mice undergoing congenic bone marrow transplant (BMT). Engraftment was similar in both TMI and TBI-treated young and old mice. Dose escalation using TMI (12 to 16 Gy in two fractions) was well tolerated in mice of both age groups (90% survival ~12 Weeks post-BMT). In contrast, TBI at the higher dose of 16 Gy was particularly lethal in younger mice (0% survival ~2 weeks post-BMT) while old mice showed much more tolerance (75% survival ~13 weeks post-BMT) suggesting higher radio-resistance in aged organs. Histopathology confirmed worse acute and chronic organ damage in mice treated with TBI than TMI. As the damage was alleviated, the repair processes were augmented in the TMI-treated mice over TBI as measured by average villus height and a reduced ratio of relative mRNA levels of amphiregulin/epidermal growth factor (areg/egf). These findings suggest that organ sparing using TMI does not limit donor engraftment but significantly reduces normal tissue damage and preserves repair capacity with the potential for dose escalation in elderly patients.

10.
Antioxidants (Basel) ; 11(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36139722

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways. However, unexpectedly, activation is often delayed for many days after the initial ROS burst. Here, we demonstrate that, as assayed by γ-H2AX staining, rapid DNA double strand break (DSB) formation by IR in primary mouse Nrf2-/- MEFs was not affected by loss of NRF2, and neither was DSB repair to any great extent. In spite of this, basal and IR-induced transformation was greatly enhanced, suggesting that NRF2 protects against late IR-induced genomic instability, at least in murine MEFs. Another possible IR- and NRF2-related event that could be altered is inflammation and NRF2 deficiency increased IR-induced NF-κB pro-inflammatory responses mostly late after exposure. The proclivity of NRF2 to restrain inflammation is also reflected in the reprogramming of tumor antigen-specific lymphocyte responses in mice where Nrf2 k.o. switches Th2 responses to Th1 polarity. Delayed NRF2 responses to IR may be critical for the immune transition from prooxidant inflammation to antioxidant healing as well as in driving cellular radioresistance and survival. Targeting NRF2 to reprogram immunity could be of considerable therapeutic benefit in radiation and immunotherapy.

11.
Int J Radiat Biol ; 98(3): 267-275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030065

RESUMO

PURPOSE: This review is focused on radium and radionuclides in its decay chain in honor of Marie Curie, who discovered this element. MATERIALS AND METHODS: We conglomerated current knowledge regarding radium and its history predating our present understanding of this radionuclide. RESULTS: An overview of the properties of radium and its dose assessment is shown followed by discussions about both the negative detrimental and positive therapeutic applications of radium with this history and its evolution reflecting current innovations in medical science. CONCLUSIONS: We hope to remind all those who are interested in the progress of science about the vagaries of the process of scientific discovery. In addition, we raise the interesting question of whether Marie Curie's initial success was in part possible due to her tight alignment with her husband Pierre Curie who pushed the work along.


Assuntos
Radiologia , Rádio (Elemento) , Feminino , França , História do Século XIX , História do Século XX , Humanos , Radiologia/história
12.
Int J Radiat Biol ; 98(3): 346-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34129427

RESUMO

PURPOSE: As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS: The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.


Assuntos
Neoplasias , Proteção Radiológica , Feminino , Humanos , Radiobiologia
14.
Front Pharmacol ; 12: 666776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084139

RESUMO

We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.

15.
Stem Cell Res Ther ; 12(1): 301, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044885

RESUMO

BACKGROUND: Powerful constitutive and inducible transgenic / bitransgenic / tritransgenic murine models of breast cancer have been used over the past two decades to shed light on the molecular mechanisms by which the given transgenic oncogenes have interacted with other cellular genes and set in motion breast cancer initiation and progression. However, these transgenic models, as in vivo models only, are expensive and restrictive in the opportunities they provide to manipulate the experimental variables that would enable a better understanding of the molecular events related to initial transformation and the target cell being transformed. METHODS: To overcome some of these limitations, we derived oncogene-containing induced pluripotent stem cell (iPSC) clones from tail vein fibroblasts of these transgenic mice and manipulated them both in vitro and in vivo in non-transgenic background mice. We created the iPSC clones with a relatively low M.O.I, producing retroviral integrations which averaged only 1 to 2 sites per retroviral plasmid construct used. RESULTS: Most iPSC clones derived from each group displayed an essentially normal murine karyotype, strong expression of the exogenous reprogrammable genes and significant expression of characteristic endogenous murine surface stem cell markers including SSEA-1 (CD15), PECAM-1 (CD31), Ep-Cam (CD326), and Nectin (CD112), but no expression of their transgene. A majority (75%) of iPSC clones displayed a normal murine karyotype but 25% exhibited a genomically unstable karyotype. However, even these later clones exhibited stable and characteristic iPSC properties. When injected orthotopically, select iPSC clones, either constitutive or inducible, no longer expressed their exogenous pluripotency reprogramming factors but expressed their oncogenic transgene (PyVT or ErbB2) and participated in both breast ontogenesis and subsequent oncogenesis. When injected non-orthotopically or when differentiated in vitro along several different non-mammary lineages of differentiation, the iPSC clones failed to do so. Although many clones developed anticipated teratomas, select iPSC clones under the appropriate constitutive or inducible conditions exhibited both breast ontogenesis and oncogenesis through the same stages as exhibited by their transgenic murine parents and, as such, represent transgenic surrogates. CONCLUSIONS: The iPSC clones offer a number of advantages over transgenic mice including cost, the ability to manipulate and tag in vitro, and create an in vitro model of breast ontogeny and oncogenesis that can be used to gain additional insights into the differentiated status of the target cell which is susceptible to transformation. In addition, the use of these oncogene-containing iPSC clones can be used in chemopreventive studies of breast cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Transformação Celular Neoplásica/genética , Fibroblastos , Camundongos , Camundongos Transgênicos , Oncogenes/genética
16.
Environ Int ; 149: 106212, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33293042

RESUMO

Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.


Assuntos
Neoplasias , Radiação Ionizante , Relação Dose-Resposta à Radiação , Humanos , Sistema Imunitário , Inflamação
17.
Prostate Cancer Prostatic Dis ; 24(1): 135-139, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32647353

RESUMO

BACKGROUND: Hundreds of ongoing clinical trials combine radiation therapy, mostly delivered as stereotactic body radiotherapy (SBRT), with immune checkpoint blockade. However, our understanding of the effect of radiotherapy on the intratumoral immune balance is inadequate, hindering the optimal design of trials that combine radiation therapy with immunotherapy. Our objective was to characterize the intratumoral immune balance of the malignant prostate after SBRT in patients. METHODS: Sixteen patients with high-risk, non-metastatic prostate cancer at comparable Gleason Grade disease underwent radical prostatectomy with (n = 9) or without (n = 7) neoadjuvant SBRT delivered in three fractions of 8 Gy over 5 days completed 2 weeks before surgery. Freshly resected prostate specimens were processed to obtain single-cell suspensions, and immune-phenotyped for major lymphoid and myeloid cell subsets by staining with two separate 14-antibody panels and multicolor flow cytometry analysis. RESULTS: Malignant prostates 2 weeks after SBRT had an immune infiltrate dominated by myeloid cells, whereas malignant prostates without preoperative treatment were more lymphoid-biased (myeloid CD45+ cells 48.4 ± 19.7% vs. 25.4 ± 7.0%; adjusted p-value = 0.11; and CD45+ lymphocytes 51.6 ± 19.7% vs. 74.5 ± 7.0%; p = 0.11; CD3+ T cells 35.2 ± 23.8% vs. 60.9 ± 9.7%; p = 0.12; mean ± SD). CONCLUSION: SBRT drives a significant lymphoid to myeloid shift in the prostate-tumor immune infiltrate. This may be of interest when combining SBRT with immunotherapies, particularly in prostate cancer.


Assuntos
Imunoterapia/métodos , Células Mieloides/patologia , Prostatectomia/métodos , Neoplasias da Próstata/terapia , Radiocirurgia/métodos , Humanos , Injeções Intralinfáticas , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Gradação de Tumores , Próstata , Neoplasias da Próstata/patologia , Qualidade de Vida
18.
Radiat Res ; 194(5): 452-464, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045077

RESUMO

The limited impact of treatments for COVID-19 has stimulated several phase 1 clinical trials of whole-lung low-dose radiation therapy (LDRT; 0.3-1.5 Gy) that are now progressing to phase 2 randomized trials worldwide. This novel but unconventional use of radiation to treat COVID-19 prompted the National Cancer Institute, National Council on Radiation Protection and Measurements and National Institute of Allergy and Infectious Diseases to convene a workshop involving a diverse group of experts in radiation oncology, radiobiology, virology, immunology, radiation protection and public health policy. The workshop was held to discuss the mechanistic underpinnings, rationale, and preclinical and emerging clinical studies, and to develop a general framework for use in clinical studies. Without refuting or endorsing LDRT as a treatment for COVID-19, the purpose of the workshop and this review is to provide guidance to clinicians and researchers who plan to conduct preclinical and clinical studies, given the limited available evidence on its safety and efficacy.


Assuntos
Infecções por Coronavirus/radioterapia , Pneumonia Viral/radioterapia , Doses de Radiação , Animais , COVID-19 , Ensaios Clínicos como Assunto , Humanos , Pandemias , Dosagem Radioterapêutica , Risco , Pesquisa Translacional Biomédica
19.
Int J Radiat Oncol Biol Phys ; 108(4): 930-935, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562839

RESUMO

PURPOSE: This study aimed to evaluate the feasibility and safety of prostate stereotactic body radiation therapy (SBRT) neoadjuvant to radical prostatectomy (RP) in a phase 1 trial. The primary endpoint was treatment completion rate without severe acute surgical complications. Secondary endpoints included patient-reported quality of life and physician-reported toxicities. METHODS AND MATERIALS: Patients with nonmetastatic high-risk or locally advanced prostate cancer received 24 Gy in 3 fractions to the prostate and seminal vesicles over 5 days, completed 2 weeks before RP. Patients with pN1 disease were treated after multidisciplinary discussion and shared decision making. Patient-reported quality of life (International Prostate Symptom Score and Expanded Prostate Cancer Index Composite 26-item version questionnaires) and physician-reported toxicity (Common Terminology Criteria for Adverse Events, version 4.03) were assessed before SBRT, immediately before surgery, and at 3-month intervals for 1 year. RESULTS: Twelve patients were enrolled, and 11 completed treatment (1 patient had advanced disease on prostate-specific membrane antigen positron emission tomography after enrollment but before treatment). There were no significant surgical complications. After RP, 2 patients underwent additional radiation therapy to nodes with androgen suppression for pN1 disease. Median follow-up after completion of treatment was 20.1 months, with 9 of 11 patients having a follow-up period of >12 months. Two patients had biochemical recurrence (prostate-specific antigen ≥0.05) within the first 12 months, with an additional 2 patients found to have biochemical recurrence after the 12-month period. The highest Common Terminology Criteria for Adverse Events genitourinary grades were 0, 1, 2, and 3 (n = 1, 4, 4, and 2, respectively), and the highest gastrointestinal grades were 0, 1, and 2 (n = 9, 1, and 1, respectively). At 12 months, incontinence was the only grade ≥2 toxicity. One and 2 of 9 patients had grade 2 and 3 incontinence, respectively. On the Expanded Prostate Cancer Index Composite (26-item version), the mean/median changes in scores from baseline to 12 months were -32.8/-31.1 for urinary incontinence, -1.6/-6.2 for urinary irritative/obstructive, -2.1/0 for bowel, -34.4/-37.5 for sexual function, and -10.6/-2.5 for hormonal. The mean/median change in International Prostate Symptom Score from baseline to 12 months was 0.5/0.5. CONCLUSIONS: RP after neoadjuvant SBRT appears to be feasible and safe at the dose tested. The severity of urinary incontinence may be higher than RP alone.


Assuntos
Terapia Neoadjuvante/métodos , Prostatectomia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Radiocirurgia , Estudos de Viabilidade , Seguimentos , Humanos , Masculino , Próstata/efeitos da radiação , Neoplasias da Próstata/patologia , Qualidade de Vida , Glândulas Seminais/efeitos da radiação , Incontinência Urinária/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA