Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(4)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456456

RESUMO

Non-inflammatory alopecia is a frequent skin problem in dogs, causing damaged coat integrity and compromised appearance of affected individuals. In this study, we examined the Cesky Fousek breed, which displays atypical recurrent flank alopecia (aRFA) at a high frequency. This type of alopecia can be quite severe and is characterized by seasonal episodes of well demarcated alopecic areas without hyperpigmentation. The genetic component responsible for aRFA remains unknown. Thus, here we aimed to identify variants involved in aRFA using a combination of histological, genomic, and transcriptomic data. We showed that aRFA is histologically similar to recurrent flank alopecia, characterized by a lack of anagen hair follicles and the presence of severely shortened telogen or kenogen hair follicles. We performed a genome-wide association study (GWAS) using 216 dogs phenotyped for aRFA and identified associations on chromosomes 19, 8, 30, 36, and 21, highlighting 144 candidate genes, which suggests a polygenic basis for aRFA. By comparing the skin cell transcription pattern of six aRFA and five control dogs, we identified 236 strongly differentially expressed genes (DEGs). We showed that the GWAS genes associated with aRFA are often predicted to interact with DEGs, suggesting their joint contribution to the development of the disease. Together, these genes affect four major metabolic pathways connected to aRFA: collagen formation, muscle structure/contraction, lipid metabolism, and the immune system.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Alopecia/genética , Alopecia/patologia , Alopecia/veterinária , Animais , Cães , Folículo Piloso , Pele/patologia , Transcriptoma/genética
2.
Toxicol Pathol ; 45(3): 435-439, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28421969

RESUMO

Hartley guinea pigs are widely used animal models of disease, particularly in studies of osteoarthritis. The purpose of this study was to investigate lesions in the costal cartilage from 16 male, 5- to 6-month-old Hartley guinea pigs. Routine histological sections from the costal cartilage and costochondral junction (longitudinal and cross sections) and sternum (for evaluation of bone marrow) were examined. All 16 (100%) animals had histological lesions involving the costal cartilage that included matrix degeneration and mineralization, reduced cellularity, and evidence of chondrocyte necrosis. Of the 16, 4 (25%) of the lesions contained blood vessels and 3 (19%) contained central osseous metaplasia. The cartilage lesions were accompanied by degeneration (sometimes with regeneration and/or fibrosis) in adjacent skeletal muscle in 15 of the 16 (94%) animals. The lesions in the costal cartilage were interpreted as dystrophic mineralization of unknown cause and appear to be incidental findings, although they bear some resemblance to lesions occurring in Tietze's disease in humans. The significance of the lesions in skeletal muscle is unclear. Histological lesions of cartilage matrix degeneration and mineralization in these sites have not, to our knowledge, been reported previously.


Assuntos
Calcinose , Cartilagem Costal/patologia , Modelos Animais de Doenças , Osteoartrite/patologia , Animais , Cobaias , Metaplasia , Músculo Esquelético/patologia
3.
Mol Biol Cell ; 27(15): 2404-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251063

RESUMO

The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.


Assuntos
Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Animais , Chlamydomonas/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA