Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 307(2): 95-107, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27965080

RESUMO

Dendritic cells (DCs) and macrophages (MΦ) are critical for protection against pathogenic fungi including Aspergillus fumigatus. To analyze the role of platelets in the innate immune response, human DCs and MΦs were challenged with A. fumigatus in presence or absence of human platelet rich plasma (PRP). Gene expression analyses and functional investigations were performed. A systems biological approach was used for initial modelling of the DC - A. fumigatus interaction. DCs in a quiescent state together with different corresponding activation states were validated using gene expression data from DCs and MΦ stimulated with A. fumigatus. To characterize the influence of platelets on the immune response of DCs and MΦ to A. fumigatus, we experimentally quantified their cytokine secretion, phagocytic capacity, maturation, and metabolic activity with or without platelets. PRP in combination with A. fumigatus treatment resulted in the highest expression of the maturation markers CD80, CD83 and CD86 in DCs. Furthermore, PRP enhanced the capacity of macrophages and DCs to phagocytose A. fumigatus conidia. In parallel, PRP in combination with the innate immune cells significantly reduced the metabolic activity of the fungus. Interestingly, A. fumigatus and PRP stimulated MΦ showed a significantly reduced gene expression and secretion of IL6 while PRP only reduced the IL-6 secretion of A. fumigatus stimulated DCs. The in silico systems biological model correlated well with these experimental data. Different modules centrally involved in DC function became clearly apparent, including DC maturation, cytokine response and apoptosis pathways. Taken together, the ability of PRP to suppress IL-6 release of human DCs might prevent local excessive inflammatory hemorrhage, tissue infarction and necrosis in the human lung.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Plasma Rico em Plaquetas/metabolismo , Antígenos CD/análise , Diferenciação Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Fagocitose
2.
Int J Med Microbiol ; 301(5): 408-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21565548

RESUMO

Aspergillus fumigatus as prime pathogen to cause aspergillosis has evolved as a saprophyte, but is also able to infect and colonise immunocompromised hosts. Based on the 'dual use' hypothesis of fungal pathogenicity, general characteristics have to be considered as unspecific virulence determinants, among them stress adaptation capacities. The susceptible, warm-blooded mammalian host represents a specific ecological niche that poses several kinds of stress conditions to the fungus during the course of infection. Detailed knowledge about the cellular pathways and adaptive traits that have evolved in A. fumigatus to counteract situations of stress and varying environmental conditions is crucial for the identification of novel and specific antifungal targets. Comprehensive profiling data accompanied by mutant analyses have shed light on such stressors, and nutritional deprivation, oxidative stress, hypoxia, elevated temperature, alkaline pH, extensive secretion, and, in particular during treatment with antifungals, cell membrane perturbations appear to represent the major hazards A. fumigatus has to cope with during infection. Further efforts employing innovative approaches and advanced technologies will have to be made to expand our knowledge about the scope of the A. fumigatus adaptome that is relevant for disease.


Assuntos
Adaptação Fisiológica , Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/patogenicidade , Interações Hospedeiro-Patógeno , Estresse Fisiológico , Humanos , Mutação , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA