Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Numer Math (Heidelb) ; 140(2): 479-511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220739

RESUMO

In a previous paper (Graham et al. in J Comput Phys 230:3668-3694, 2011), the authors proposed a new practical method for computing expected values of functionals of solutions for certain classes of elliptic partial differential equations with random coefficients. This method was based on combining quasi-Monte Carlo (QMC) methods for computing the expected values with circulant embedding methods for sampling the random field on a regular grid. It was found capable of handling fluid flow problems in random heterogeneous media with high stochastic dimension, but no convergence theory was provided. This paper provides a convergence analysis for the method in the case when the QMC method is a specially designed randomly shifted lattice rule. The convergence result depends on the eigenvalues of the underlying nested block circulant matrix and can be independent of the number of stochastic variables under certain assumptions. In fact the QMC analysis applies to general factorisations of the covariance matrix to sample the random field. The error analysis for the underlying fully discrete finite element method allows for locally refined meshes (via interpolation from a regular sampling grid of the random field). Numerical results on a non-regular domain with corner singularities in two spatial dimensions and on a regular domain in three spatial dimensions are included.

2.
Proc Math Phys Eng Sci ; 471(2176): 20140679, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547075

RESUMO

This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA