Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513324

RESUMO

The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Neoplasias da Mama , Lignanas , Humanos , Feminino , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
2.
EXCLI J ; 22: 1155-1172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204967

RESUMO

A current clinical challenge in cancer is multidrug resistance (MDR) mediated by ABC transporters. Breast cancer resistance protein (BCRP) or ABCG2 transporter is one of the most important ABC transporters implicated in MDR and the use of inhibitors is a promising approach to overcome the resistance in cancer. This study aimed to characterize the molecular mechanism of ABCG2 inhibitors identified by a repurposing drug strategy using antiviral, anti-inflammatory and antiparasitic agents. Lopinavir and ivermectin can be considered as pan-inhibitors of ABC transporters, since both compounds inhibited ABCG2, P-glycoprotein and MRP1. They inhibited ABCG2 activity showing IC50 values of 25.5 and 23.4 µM, respectively. These drugs were highly cytotoxic and not transported by ABCG2. Additionally, these drugs increased the 5D3 antibody binding and did not affect the mRNA and protein expression levels. Cell-based analysis of the type of inhibition suggested a non-competitive inhibition, which was further corroborated by in silico approaches of molecular docking and molecular dynamics simulations. These results showed an overlap of the lopinavir and ivermectin binding sites on ABCG2, mainly interacting with E446 residue. However, the substrate mitoxantrone occupies a different site, binding to the F436 region, closer to the L554/L555 plug. In conclusion, these results revealed the mechanistic basis of lopinavir and ivermectin interaction with ABCG2. See also the Graphical abstract(Fig. 1).

3.
Eur J Med Chem ; 237: 114346, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483322

RESUMO

The primary source of failure of cancer therapies is multidrug resistance (MDR), which can be caused by different mechanisms, including the overexpression of ABC transporters in cancer cells. Among the 48 human ABC proteins, the breast cancer resistance protein (BCRP/ABCG2) has been described as a pivotal player in cancer resistance. The use of functional inhibitors and expression modulators is a promising strategy to overcome the MDR caused by ABCG2. Despite the lack of clinical trials using ABCG2 inhibitors, many compounds have already been discovered. This review presents an overview about various ABCG2 inhibitors that have been identified, discussing some chemical aspects and the main experimental methods used to identify and characterize the mechanisms of new inhibitors. In addition, some biological requirements to pursue preclinical tests are described. Finally, we discuss the potential use of ABCG2 inhibitors in cancer stem cells (CSC) for improving the objective response rate and the mechanism of ABCG2 modulators at transcriptional and protein expression levels.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA