Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
RSC Med Chem ; 15(7): 2380-2399, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39026643

RESUMO

Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 µM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 µM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.

2.
RSC Adv ; 14(32): 23257-23272, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39045402

RESUMO

A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a K i value of 42.2 nM compared to the reference AAZ (K i = 25.7 nM). Nevertheless, most of the synthesized compounds have their highest activity against CA I and CA II isoforms over CA IX and CA XII. A molecular modeling study was used for an estimation of the binding mode of the selected ligand 7g in the active site of CA IX. The most active compounds (7b, 7f, 7h, and 18) exhibited significant antiproliferative activity against MCF-7, Capan-1, DND-41, HL60, and Z138 cell lines, with IC50 values in low micromolar concentrations. Moreover, derivatives 7a, 7e, and 8g showed similar hypoxic cytotoxic activity and selectivity compared to tirapazamine (TPZ) against adenocarcinoma cells MCF-7. The structure-activity relationships analysis revealed that the presence of a halogen atom or a sulfonamide group as substituents in the phenyl ring of quinoxaline-2-carbonitrile 1,4-dioxides was favorable for overall cytotoxicity against most of the tested cancer cell lines. Additionally, the presence of a carbonitrile fragment in position 2 of the heterocycle also had a positive effect on the antitumor properties of such derivatives against the majority of cell lines. The most potent derivative, 3-trifluoromethylquinoxaline 1,4-dioxide 7h, demonstrated higher or close antiproliferative activity compared to the reference agents, such as doxorubicin, and etoposide, with an IC50 range of 1.3-2.1 µM. Analysis of the obtained results revealed important patterns in the structure-activity relationship. Moreover, these findings highlight the potential of selected lead sulfonamides on the quinoxaline 1,4-dioxide scaffold for further in-depth evaluation and development of chemotherapeutic agents targeting carbonic anhydrases.

3.
Arch Pharm (Weinheim) ; 357(7): e2300651, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570819

RESUMO

A series of D-ring modified steroids bearing a vinyl ketone pendant were synthesized and evaluated for antiproliferative activity against breast cancer cell line and cytochromes P450. The lead compound, 21-vinyl 20-keto-pregnene (2f) (IC50 = 2.4 µM), was shown to be a promising candidate for future anticancer drug design, particularly against estrogen receptor α (ERα)-positive breast cancer. The lead compound was found to have a significant effect on the signaling pathways in parental and 4-hydroxytamoxifen-resistant cells. Compound 2f modulated the ERK, cyclin D1, and CDK4 pathways and blocked the expression of ERα, the main driver of breast cancer growth. Compound 2f significantly reduced 17ß-estradiol-induced progesterone receptor expression. Accumulation of cleaved poly(ADP-ribose) polymerase in cells treated with compound 2f indicated induction of apoptosis. The selectivity analysis showed that lead compound 2f produces no significant effects on cytochromes P450, CYP19A1, CYP21A2, and CYP7B1.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células , Receptor alfa de Estrogênio , Transdução de Sinais , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Pregnenos/farmacologia , Pregnenos/síntese química , Pregnenos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Vinila/farmacologia , Compostos de Vinila/síntese química , Compostos de Vinila/química
4.
Biomed Rep ; 20(3): 42, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343657

RESUMO

Combining chemotherapy and hormone therapy is a prevalent approach in breast cancer treatment. While the cytotoxic impact of numerous chemotherapy drugs stems from DNA damage, the exact role of these DNA alterations in modulating estrogen receptor α (ERα) machinery remains elusive. The present study aimed to analyze the impact of DNA damage agents on ERα signaling in breast cancer cells and assess the signaling pathways mediating the influence of DNA damage drugs on the ERα machinery. Cell viability was assessed using the MTT method, while the expression of signaling proteins was analyzed by immunoblotting. ERα activity in the cells treated with various drugs (17ß-estradiol, tamoxifen, 5-fluorouracil) was assessed through reporter gene assays. In vitro experiments were conducted on MCF7 breast cancer cells subjected to varying durations of 5-fluorouracil (5-FU) treatment. Two distinct cell responses to 5-FU were identified based on the duration of the treatment. A singular dose of 5-FU induces pronounced DNA fragmentation, temporally suppressing ERα signaling while concurrently activating AKT phosphorylation. This suppression reverses upon 5-FU withdrawal, restoring normalcy within ten days. However, chronic 5-FU treatment led to the emergence of 5-FU-resistant cells with irreversible alterations in ERα signaling, resulting in partial hormonal resistance. These changes mirror those observed in cells subjected to UV-induced DNA damage, underscoring the pivotal role of DNA damage in shaping estrogen signaling alterations in breast cancer cells. In summary, the results of the present study suggested that the administration of DNA damage agents to cancer cells can trigger irreversible suppression of estrogen signaling, fostering the development of partial hormonal resistance. This outcome may ultimately impede the efficacy of combined or subsequent chemo- and hormone therapy strategies.

5.
Res Pharm Sci ; 18(5): 580-591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842518

RESUMO

Background and purpose: Primary and metastatic breast cancers still represent an unmet clinical need for improved chemotherapy and hormone therapy. Considerable attention has been paid to natural anticancer compounds, especially lignans. The study aimed to evaluate the activity of several lignans against breast cancer cells and assess the effect of leading lignans on signaling pathways in combination with metformin. Experimental approach: Human breast cancer cell lines MCF7 (hormone-dependent), MDA-MB-231, and SKBR3 (hormone-independent) were used. A hormone-resistant MCF7/hydroxytamoxifen (HT) subline was obtained by long-term cultivation of the MCF7 line with hydroxytamoxifen. Antiproliferative activity was assessed by the MTT test; the expression of signaling pathway proteins was evaluated by immunoblotting analysis. Findings/Results: We evaluated the antiproliferative activity of lignans in breast cancer cells with different levels of hormone dependence and determined the relevant IC50 values. Honokiol was chosen as the leading compound, and its IC50 ranged from 12 to 20 µM, whereas for other tested lignans, the IC50 exceeded 50 µM. The accumulation of cleaved PARP and a decrease in the expression of Bcl-2 and ERα in MCF7/HT were induced following the combination of honokiol with metformin. Conclusions and implications: Honokiol demonstrated significant antiproliferative activity against both hormone-dependent breast cancer cells and lines with primary and acquired hormone resistance. The combination of honokiol with metformin is considered an effective approach to induce death in hormone-resistant cells. Honokiol is of interest as a natural compound with antiproliferative activity against breast cancers, including resistant tumors.

6.
J Steroid Biochem Mol Biol ; 234: 106386, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666392

RESUMO

A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Triazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Células MCF-7 , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
7.
Bioimpacts ; 13(4): 313-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645026

RESUMO

Introduction: Resistance to chemotherapy and/or irradiation remains one of the key features of malignant tumors, which largely limits the efficiency of antitumor therapy. In this work, we studied the progression mechanism of breast cancer cell resistance to target drugs, including mTOR blockers, and in particular, we studied the exosome function in intercellular resistance transfer. Methods: The cell viability was assessed by the MTT assay, exosomes were purified by successive centrifugations, immunoblotting was used to evaluate protein expression, AP-1 activity was analyzed using reporter assay. Results: In experiments on the MCF-7 cell line (breast cancer) and the MCF-7/Rap subline that is resistant to rapamycin, the capability of resistant cell exosomes to trigger a similar rapamycin resistance in the parent MCF-7 cells was demonstrated. Exosome-induced resistance reproduces the changes revealed in MCF-7/Rap resistant cells, including the activation of ERK/AP-1 signaling, and it remains for a long time, for at least several months, after exosome withdrawal. We have shown that both the MCF-7 subline resistant to rapamycin and cells having exosome-triggered resistance demonstrate a stable decrease in the expression of DNMT3A, the key enzyme responsible for DNA methylation. Knockdown of DNMT3A in MCF-7 cells by siRNA leads to partial cell resistance to rapamycin; thus, the DNMT3A suppression is regarded as one of the necessary elements for the development of acquired rapamycin resistance. Conclusion: We propose that DNA demethylation followed by increased expression of key genes may be one of the factors responsible for the progression and maintenance of the resistant cell phenotype that includes exosome-induced resistance.

8.
Cancer Drug Resist ; 6(1): 103-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065867

RESUMO

Aim: The study aims to analyze the effect of long-term incubation of ERα-positive MCF7 breast cancer cells with 4-hydroxytamoxifen (HT) on their sensitivity to tubulin polymerization inhibitor docetaxel. Methods: The analysis of cell viability was performed by the MTT method. The expression of signaling proteins was analyzed by immunoblotting and flow cytometry. ERα activity was evaluated by gene reporter assay. To establish hormone-resistant subline MCF7, breast cancer cells were treated with 4-hydroxytamoxifen for 12 months. Results: The developed MCF7/HT subline has lost sensitivity to 4-hydroxytamoxifen, and the resistance index was 2. Increased Akt activity (2.2-fold) and decreased ERα expression (1.5-fold) were revealed in MCF7/HT cells. The activity of the estrogen receptor α was reduced (1.5-fold) in MCF7/HT. Evaluation of class III ß-tubulin expression (TUBB3), a marker associated with metastasis, revealed the following trends: higher expression of TUBB3 was detected in triple-negative breast cancer MDA-MB-231 cells compared to hormone-responsive MCF7 cells (P < 0.05). The lowest expression of TUBB3 was found in hormone-resistant MCF7/HT cells (MCF7/HT < MCF7 < MDA-MB-231, approximately 1:2:4). High TUBB3 expression strongly correlated with docetaxel resistance: IC50 value of docetaxel for MDA-MB-231 cells was greater than that for MCF7 cells, whereas resistant MCF7/HT cells were the most sensitive to the drug. The accumulation of cleaved PARP (a 1.6-fold increase) and Bcl-2 downregulation (1.8-fold) were more pronounced in docetaxel-treated resistant cells (P < 0.05). The expression of cyclin D1 decreased (2.8-fold) only in resistant cells after 4 nM docetaxel treatment, while this marker was unchanged in parental MCF7 breast cancer cells. Conclusion: Further development of taxane-based chemotherapy for hormone-resistant cancer looks highly promising, especially for cancers with low TUBB3 expression.

9.
J Steroid Biochem Mol Biol ; 231: 106309, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37037385

RESUMO

Heterocyclic derivatives of steroid hormones are potent anticancer agents, which are used in the chemotherapy of breast and prostate cancers. Here, we describe a novel series of androstenes, D-modified with imidazole-annulated pendants, with significant anticancer activity. Novel C17-linked imidazole-annulated heterocyclic derivatives of dehydropregnenolone acetate were synthesized by the cyclocondensation with amidines using 3ß-acetoxy-21-bromopregna-5,16-dien-20-one as the substrate. The antiproliferative potency of all the synthesized compounds was evaluated against human prostate (22Rv1) and human breast (MCF7) cancer cell lines and cytochromes P450. The lead compound, imidazo[1,2-a]pyridine derivative 3h, was revealed to be a promising candidate for future anticancer drug design, particularly against ERα-positive breast cancer. Lead compound 3h was found to be selective against MCF7 cells with IC50 of 0.1 µM and to act as both a potent selective agent blocking estrogen receptor α, which is involved in the stimulation of breast cancer growth, and an effective apoptosis inducer. The potential ability of compound 3h to bind to ERα was studded using molecular docking and molecular dynamics simulation. The selectivity analysis showed that lead steroid 3h produces no effects on cytochromes P450 CYP17A1, CYP7A1, and CYP21A2.


Assuntos
Antineoplásicos , Neoplasias da Mama , Masculino , Humanos , Receptor alfa de Estrogênio , Moduladores de Receptor Estrogênico/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Esteroides/farmacologia , Esteroides/química , Imidazóis/farmacologia , Antagonistas de Estrogênios/farmacologia , Neoplasias da Mama/tratamento farmacológico , Citocromos/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
10.
J Steroid Biochem Mol Biol ; 228: 106245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608906

RESUMO

An elegant approach to unknown secosteroid-quinoline hybrids is disclosed. A series of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(iso)quinolylmethylene]hydrazides was prepared and these novel type of secosteroids was screened for antiproliferative activity against estrogen-responsive human breast cancer cell line MCF-7. Most of the synthesized compounds showed a cytotoxic effect superior to that of reference drug cisplatin; the lead compound exhibits the highest activity with the IC50 value of about 0.8 µM and is 7 times more active than cisplatin. A high selectivity index was observed for the hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-quinolylmethylene]hydrazides 2a and 2c. Compounds 2a and 2c evaluated in luciferase reporter assays exhibited high antiestrogenic potency which was superior to that of tamoxifen. These hit compounds were characterized by high activity against MCF-7 cells that retained towards multidrug-resistant NCI/ADR-RES cells.


Assuntos
Antineoplásicos , Quinolinas , Secoesteroides , Humanos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Trientina/farmacologia , Antineoplásicos/farmacologia , Quinolinas/farmacologia , Secoesteroides/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
11.
Invest New Drugs ; 41(1): 142-152, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36695998

RESUMO

The promising antitumor effects of progesterone derivatives have been identified in many studies. However, the specific mechanism of action of this class of compounds has not been fully described. Therefore, in this study, we investigated the antiproliferative and (anti)estrogenic activities of novel pentacyclic derivatives and benzylidenes of the progesterone series. The antiproliferative effects of the compounds were evaluated on hormone-dependent MCF7 breast cancer cells using the MTT test. Estrogen receptor α (ERα) activity was assessed by a luciferase-based reporter assay. Immunoblotting was used to evaluate the expression of signaling proteins. All benzylidenes demonstrated inhibitory effects with IC50 values below 10 µM, whereas pentacyclic derivatives were less active. These patterns may be associated with the lability of the geometry of benzylidene molecules, which contributes to an increase in the affinity of interaction with the receptor. The selected compounds showed significant anti-estrogenic potency. Benzylidene 1d ((8 S,9 S,10R,13 S,14 S,17 S)-17-[(2E)-3-(4-fluorophenyl)prop-2-enoyl]-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthren-3-one) was the most active in antiproliferative and anti-estrogenic assays. Apoptosis induced by compound 1d was accompanied by decreases in CDK4, ERα, and Cyclin D1 expression. Compounds 1d and 3d were characterized by high inhibitory potency against resistant breast cancer cells. Apoptosis induced by the leader compounds was confirmed by PARP cleavage and flow cytometry analysis. Compound 3d caused cell arrest in the G2/M phase. Further analysis of novel derivatives of the progesterone series is of great importance for medicinal chemistry, drug design, and oncology.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Receptor alfa de Estrogênio/metabolismo , Progesterona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade
12.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38256865

RESUMO

Breast and other estrogen receptor α-positive cancers tend to develop resistance to existing drugs. Chalcone derivatives possess anticancer activity based on their ability to form covalent bonds with targets acting as Michael acceptors. This study aimed to evaluate the anticancer properties of a series of chalcones (7a-l) with a sulfonamide group attached to the vinyl ketone moiety. Chalconesulfonamides showed a potent antiproliferative effect at low micromolar concentrations against several cancer cell lines, including ERα-positive 4-hydroxytamoxifen-resistant MCF7/HT2. Immunoblotting of samples treated with the lead compound 7e revealed its potent antiestrogenic activity (ERα/GREB1 axis) and induction of PARP cleavage (an apoptosis marker) in breast cancer cells. The obtained compounds represent a promising basis for further development of targeted drugs blocking hormone pathways in cancer cells.

13.
Braz. J. Pharm. Sci. (Online) ; 59: e22540, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439522

RESUMO

Abstract This study aimed to investigate the activities of novel 20(R)-3,20-dihydroxy-19-norpregn-1,3,5(10)-trienes (kuz7 and kuz8b) of natural 13ß- and epimeric 13α-series against triple-negative MDA-MB-231 breast cancer cells. High antiproliferative activity of synthesized compounds kuz8b and kuz7 against MDA-MB-231 triple-negative cancer cells was revealed. The steroid kuz7 of natural 13ß-configuration was more active against MDA-MB-231 cells than the 13α-steroid kuz8b. Cell cycle analysis revealed common patterns for the action of both tested compounds. The number of cells in the subG1 phase increased in a dose-dependent manner, indicating induction of apoptosis, which was also verified by PARP cleavage. In contrast, the number of cells in the G0/G1 phase decreases with increasing compound concentration. Steroid kuz7 at micromolar concentrations reduced the expression of GLUT1, a glucose transporter. High efficacy of the combination of kuz7 with biguanide metformin was shown, and synergistic effects on MDA-MB-231 cell growth and expression of the anti-apoptotic protein Bcl-2 were revealed. According to the obtained results, including the high activity of kuz7 against triple-negative cancer cells, the detected induction of apoptosis, and the decrease in GLUT1 expression, 13ß-steroid kuz7 is of interest for further preclinical studies both alone and in combination with the metabolic drug metformin


Assuntos
Esteroides/agonistas , Neoplasias da Mama/patologia , Transportador de Glucose Tipo 1/efeitos adversos , Preparações Farmacêuticas/administração & dosagem , Apoptose , Metformina/administração & dosagem
14.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36558903

RESUMO

The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.

15.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559322

RESUMO

(1) Background: This investigation aimed at developing a series of c-Met-targeting cabozantinib-based PROTACs. (2) Methods: Purification of intermediate and target compounds was performed using column chromatography, in vitro antiproliferation activity was measured using a standard MTT assay and a c-Met degradation assay was performed via the immunoblotting technique. (3) Results: Several compounds exhibited antiproliferative activity towards different cell lines of breast cancer (T47D, MDA-MB-231, SKBR3, HCC1954 and MCF7) at the same level as parent cabozantinib and 7-demethyl cabozantinib. Two target conjugates, bearing a VHL-ligand as an E3-ligase binding moiety and glycol-based linkers, exhibited the effective inhibition of c-Met phosphorylation and an ability to decrease the level of c-Met in HCC1954 cells at micromolar concentrations. (4) Conclusions: Two compounds exhibit c-Met inhibition activity in the nanomolar range and can be considered as PROTAC molecules due to their ability to decrease the total level of c-Met in HCC1954 cells. The structures of the offered compounds can be used as starting points for further evaluation of cabozantinib-based PROTACs.

16.
Steroids ; 188: 109135, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336105

RESUMO

Synthesis of 21,22-cyclosteroids has been achieved starting from pregnenolone acetate. The key transformation was the Kulinkovich reaction of 17-vinyl steroids with esters. The resulting cyclopropanols were further subjected to three-membered ring-opening under various conditions including to base-, palladium or visible light-promoted isomerization and cross-coupling reaction. A number of steroidal Δ2-6-ketones and 3ß-hydroxy-Δ5-enes with functional groups at C-21 - C-23 have been synthesized via the 21,22-cyclosteroids. The antiproliferative and antihormonal activity of the obtained compounds on the cell lines of prostate (22Rv1) and breast (MCF-7) cancer was studied. The androgen receptor activity was assessed by reporter assay when the expression of signalling proteins was evaluated by immunoblotting. (20S,22R)-22-Acetoxy-21,22-cyclo-5α-cholest-5-ene with the moderate antiandrogenic potency revealed IC50 values of 18.4 ± 1.2 and 14.6 ± 1.4 µM against MCF-7 and 22Rv1 cells, respectively, and its effects on the expression of AR-V7, cyclin D1 and BCL2 were explored.


Assuntos
Antineoplásicos , Ciclosteroides , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Ciclosteroides/química , Ciclosteroides/farmacologia , Imidazóis , Pregnenolona , Receptores Androgênicos/metabolismo , Esteroides , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia
17.
Chem Res Toxicol ; 35(11): 2014-2024, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084334

RESUMO

Cancer is one of the most serious health problems that usually require heavy medical treatment. It is important to ensure that no additional burden is placed on patients due to the modes of administration and/or poor quality of pharmaceuticals. In this regard, understanding, quantifying, and improving the photostability (resistance to UV light or sunlight) of drugs is among the important elements that can improve the patient's quality of life. In this work, the photochemical properties of a wide range of furanone analogues of combretastatin A-4 and their antiproliferative activity against A-431 epidermoid carcinoma cells were studied in a search for compounds with improved photostability and antiproliferative activity. It was found that the incorporation of an arylidene moiety led to a significant improvement in photostability, while the antiproliferative activity strongly depends on the nature of the aryl residue in the arylidene moiety. The high photostability of arylidenes was achieved due to the delocalization of the central double bond of the 1,3,5-hexatriene system, which limited the 6π-electrocyclization. The best results in terms of antiproliferative activity were obtained for thiophene arylidene (IC50 = 0.6 µM) and 3,4-diarylfuran (IC50 = 0.047 µM). The obtained results address the lack of data available now in scientific literature on the photodegradation of combretastatin A-4 analogues and should be taken into account in studies of the side effects of pharmaceuticals based on them.


Assuntos
Antineoplásicos , Qualidade de Vida , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Furanos/farmacologia , Preparações Farmacêuticas , Linhagem Celular Tumoral , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142768

RESUMO

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125-250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia , Ureia
19.
Cancers (Basel) ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406568

RESUMO

Soft tissue sarcomas (STS) are heterogeneous cancers with more than 100 histological subtypes, different in molecular alterations, which make its personalized therapy very complex. Gold standard of chemotherapy for advanced STS includes combinations of Doxorubicin and Ifosfamide or Gemcitabine and Docetaxel. Chemotherapy is efficient for less than 50% of patients and it is followed by a fast development of drug resistance. Our study was directed to the search of genetic alterations in cancer cells associated with chemoresistance of undifferentiated pleomorphic and synovial sarcomas to the abovementioned genotoxic drugs. We analyzed chemoresistance of cancer cells in vitro using primary STS cultures and performed genetic analysis for the components of apoptotic signaling. In 27% of tumors, we revealed alterations in TP53, ATM, PIK3CB, PIK3R1, NTRK1, and CSF2RB. Cells from STS specimens with found genetic alterations were resistant to Dox, excluding the only one case when TP53 mutation resulted in the substitution Leu344Arg associated with partial oligomerization loss and did not cause total loss of TP53 function. Significant association between alterations in the components of apoptosis signaling and chemoresistance to Dox was found. Our data are important to elaborate further the therapeutic strategy for STS patients with alterations in apoptotic signaling.

20.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328603

RESUMO

Chemotherapy of soft tissue sarcomas (STS) is restricted by low chemosensitivity and multiple drug resistance (MDR). The purpose of our study was the analysis of MDR mechanism in different types of STS. We assessed the expression of ABC-transporters, MVP, YB-1, and analyzed their correlation with chemosensitivity of cancer cells. STS specimens were obtained from 70 patients without metastatic disease (2018-2020). Expression level of MDR-associated genes was estimated by qRT-PCR and cytofluorimetry. Mutations in ABC-transporter genes were captured by exome sequencing. Chemosensitivity (SI) of STS to doxorubicin (Dox), ifosfamide (Ifo), gemcitabine (Gem), and docetaxel (Doc) was analyzed in vitro. We found strong correlation in ABCB1, ABCC1, and ABCG2 expression. We demonstrated strong negative correlations in ABCB1 and ABCG2 expression with SI (Doc) and SI (Doc + Gem), and positive correlation of MVP expression with SI (Doc) and SI (Doc + Gem) in undifferentiated pleomorphic sarcoma. Pgp expression was shown in 5 out of 44 STS samples with prevalence of synovial sarcoma relapses and it is strongly correlated with SI (Gem). Mutations in MDR-associated genes were rarely found. Overall, STS demonstrated high heterogeneity in chemosensitivity that makes reasonable in vitro chemosensitivity testing to improve personalized STS therapy, and classic ABC-transporters are not obviously involved in MDR appearance.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Transportadores de Cassetes de Ligação de ATP/genética , Docetaxel/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Recidiva Local de Neoplasia , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA