Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Respir Rev ; 30(160)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34039674

RESUMO

Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a rapidly expanding field of computational and mathematical analysis and modelling of complex biological systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence on the role of systems biology approaches - human and mycobacterial genomics and transcriptomics, proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes - in the management of tuberculosis including prediction of risk for disease progression, severity of mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach demonstrated that at present most of the studies provide "very low" certainty of evidence for answering clinically relevant questions. Further studies in large prospective cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the findings in tuberculosis prevention and more efficient clinical management of patients.


Assuntos
Biologia de Sistemas , Tuberculose , Genômica , Humanos , Metabolômica , Estudos Prospectivos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
2.
Am J Respir Cell Mol Biol ; 51(1): 155-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24521348

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by adverse remodeling of pulmonary arteries. Although the origin of the disease and its underlying pathophysiology remain incompletely understood, inflammation has been identified as a central mediator of disease progression. Oxidative inflammatory conditions support the formation of electrophilic fatty acid nitroalkene derivatives, which exert potent anti-inflammatory effects. The current study investigated the role of 10-nitro-oleic acid (OA-NO2) in modulating the pathophysiology of PAH in mice. Mice were kept for 28 days under normoxic or hypoxic conditions, and OA-NO2 was infused subcutaneously. Right ventricular systolic pressure (RVPsys) was determined, and right ventricular and lung tissue was analyzed. The effect of OA-NO2 on cultured pulmonary artery smooth muscle cells (PASMCs) and macrophages was also investigated. Changes in RVPsys revealed increased pulmonary hypertension in mice on hypoxia, which was significantly decreased by OA-NO2 administration. Right ventricular hypertrophy and fibrosis were also attenuated by OA-NO2 treatment. The infiltration of macrophages and the generation of reactive oxygen species were elevated in lung tissue of mice on hypoxia and were diminished by OA-NO2 treatment. Moreover, OA-NO2 decreased superoxide production of activated macrophages and PASMCs in vitro. Vascular structural remodeling was also limited by OA-NO2. In support of these findings, proliferation and activation of extracellular signal-regulated kinases 1/2 in cultured PASMCs was less pronounced on application of OA-NO2.Our results show that the oleic acid nitroalkene derivative OA-NO2 attenuates hypoxia-induced pulmonary hypertension in mice. Thus, OA-NO2 represents a potential therapeutic agent for the treatment of PAH.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/fisiopatologia , Inflamação/prevenção & controle , Ácidos Oleicos/uso terapêutico , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA