Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297384

RESUMO

The cyclic nucleotide phosphodiesterase 2A is an intracellular enzyme which hydrolyzes the secondary messengers cAMP and cGMP and therefore plays an important role in signaling cascades. A high expression in distinct brain areas as well as in cancer cells makes PDE2A an interesting therapeutic and diagnostic target for neurodegenerative and neuropsychiatric diseases as well as for cancer. Aiming at specific imaging of this enzyme in the brain with positron emission tomography (PET), a new triazolopyridopyrazine-based derivative (11) was identified as a potent PDE2A inhibitor (IC50, PDE2A = 1.99 nM; IC50, PDE10A ~2000 nM) and has been radiofluorinated for biological evaluation. In vitro autoradiographic studies revealed that [18F]11 binds with high affinity and excellent specificity towards PDE2A in the rat brain. For the PDE2A-rich region nucleus caudate and putamen an apparent KD value of 0.24 nM and an apparent Bmax value of 16 pmol/mg protein were estimated. In vivo PET-MR studies in rats showed a moderate brain uptake of [18F]11 with a highest standardized uptake value (SUV) of 0.97. However, no considerable enrichment in PDE2A-specific regions in comparison to a reference region was detectable (SUVcaudate putamen = 0.51 vs. SUVcerebellum = 0.40 at 15 min p.i.). Furthermore, metabolism studies revealed a considerable uptake of radiometabolites of [18F]11 in the brain (66% parent fraction at 30 min p.i.). Altogether, despite the low specificity and the blood−brain barrier crossing of radiometabolites observed in vivo, [18F]11 is a valuable imaging probe for the in vitro investigation of PDE2A in the brain and has potential as a lead compound for further development of a PDE2A-specific PET ligand for neuroimaging.

2.
J Med Chem ; 65(13): 9034-9049, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35771668

RESUMO

The cannabinoid receptor type 2 (CB2R) is an attractive target for the diagnosis and therapy of neurodegenerative diseases and cancer. In this study, we aimed at the development of a novel 18F-labeled radioligand starting from the structure of the known naphthyrid-2-one CB2R ligands. Compound 28 (LU13) was identified with the highest binding affinity and selectivity versus CB1R (CB2RKi = 0.6 nM; CB1RKi/CB2RKi > 1000) and was selected for radiolabeling with fluorine-18 and biological characterization. The new radioligand [18F]LU13 showed high CB2R affinity in vitro as well as high metabolic stability in vivo. PET imaging with [18F]LU13 in a rat model of vector-based/-related hCB2R overexpression in the striatum revealed a high signal-to-background ratio. Thus, [18F]LU13 is a novel and highly promising PET radioligand for the imaging of upregulated CB2R expression under pathological conditions in the brain.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Ratos , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo
3.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337122

RESUMO

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.

4.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917199

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/química , Imagem Molecular , Tomografia por Emissão de Pósitrons , Animais , Humanos , Ligantes , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
5.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731831

RESUMO

A specific radioligand for the imaging of cyclic nucleotide phosphodiesterase 2A (PDE2A) via positron emission tomography (PET) would be helpful for research on the physiology and disease-related changes in the expression of this enzyme in the brain. In this report, the radiosynthesis of a novel PDE2A radioligand and the subsequent biological evaluation were described. Our prospective compound 1-(2-chloro-5-methoxy phenyl)-8-(2-fluoropyridin-4-yl)-3- methylbenzo[e]imidazo[5,1-c][1,2,4]triazine, benzoimidazotriazine (BIT1) (IC50 PDE2A = 3.33 nM; 16-fold selectivity over PDE10A) was fluorine-18 labeled via aromatic nucleophilic substitution of the corresponding nitro precursor using the K[18F]F-K2.2.2-carbonate complex system. The new radioligand [18F]BIT1 was obtained with a high radiochemical yield (54 ± 2%, n = 3), a high radiochemical purity (≥99%), and high molar activities (155-175 GBq/µmol, n = 3). In vitro autoradiography on pig brain cryosections exhibited a heterogeneous spatial distribution of [18F]BIT1 corresponding to the known pattern of expression of PDE2A. The investigation of in vivo metabolism of [18F]BIT1 in a mouse revealed sufficient metabolic stability. PET studies in mouse exhibited a moderate brain uptake of [18F]BIT1 with a maximum standardized uptake value of ~0.7 at 5 minutes p.i. However, in vivo blocking studies revealed a non-target specific binding of [18F]BIT1. Therefore, further structural modifications are needed to improve target selectivity.


Assuntos
Encéfalo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Radioisótopos de Flúor , Neuroimagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Radioisótopos de Flúor/farmacologia , Radioquímica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Suínos , Distribuição Tecidual
6.
Molecules ; 24(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370274

RESUMO

Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain, which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease-mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a Benzoimidazotriazine (BIT) scaffold was prepared leading to a prospective inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1-9) were obtained by a seven-step synthesis route, and their inhibitory potency towards PDE2A and selectivity over other PDEs were evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at the 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required.


Assuntos
Encéfalo/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Compostos Radiofarmacêuticos/química , Triazinas/síntese química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Humanos , Ligantes , Camundongos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Triazinas/química , Triazinas/farmacologia
7.
Bioorg Med Chem Lett ; 28(9): 1471-1475, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628323

RESUMO

By structure-activity relationship studies on the tilorone scaffold, the 'one armed' substituted dibenzothiophenes and the fluoren-9-ones were identified as the most potential α7 nAChR ligands. While the suitability of dibenzothiophene derivatives as PET tracers is recognized, the potential of fluoren-9-ones is insufficiently investigated. We herein report on a series of fluoren-9-one based derivatives targeting α7 nAChR with compounds 8a and 8c possessing the highest affinity and selectivity. Accordingly, with [18F]8a and [18F]8c we designed and initially evaluated the first fluoren-9-one derived α7 nAChR selective PET ligands. A future application of these radioligands is facilitated by the herein presented successful implementation of fully automated radiosynthesis.


Assuntos
Fluorenos/química , Tomografia por Emissão de Pósitrons , Receptor Nicotínico de Acetilcolina alfa7/análise , Fluorenos/síntese química , Halogenação , Humanos , Estrutura Molecular , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
8.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498659

RESUMO

Specific radioligands for in vivo visualization and quantification of cyclic nucleotide phosphodiesterase 2A (PDE2A) by positron emission tomography (PET) are increasingly gaining interest in brain research. Herein we describe the synthesis, the 18F-labelling as well as the biological evaluation of our latest PDE2A (radio-)ligand 9-(5-Butoxy-2-fluorophenyl)-2-(2-([18F])fluoroethoxy)-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazine (([18F])TA5). It is the most potent PDE2A ligand out of our series of imidazopyridotriazine-based derivatives so far (IC50 hPDE2A = 3.0 nM; IC50 hPDE10A > 1000 nM). Radiolabelling was performed in a one-step procedure starting from the corresponding tosylate precursor. In vitro autoradiography on rat and pig brain slices displayed a homogenous and non-specific binding of the radioligand. Investigation of stability in vivo by reversed-phase HPLC (RP-HPLC) and micellar liquid chromatography (MLC) analyses of plasma and brain samples obtained from mice revealed a high fraction of one main radiometabolite. Hence, we concluded that [18F]TA5 is not appropriate for molecular imaging of PDE2A neither in vitro nor in vivo. Our ongoing work is focusing on further structurally modified compounds with enhanced metabolic stability.


Assuntos
Encéfalo/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/análise , Imidazóis/química , Imagem Molecular/métodos , Neuroimagem/métodos , Piridinas/química , Animais , Autorradiografia/métodos , Encéfalo/ultraestrutura , Cromatografia Líquida/métodos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Radioisótopos de Flúor , Camundongos , Microtomia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química , Ratos , Coloração e Rotulagem/métodos , Suínos , Técnicas de Cultura de Tecidos
9.
Appl Radiat Isot ; 124: 106-113, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365525

RESUMO

Recent pharmacologic data revealed the implication of α3ß4 nicotinic acetylcholine receptors (nAChRs) in nicotine and drug addiction. To image α3ß4 nAChRs in vivo, we aimed to establish the synthesis of a [18F]-labelled analog of the highly affine and selective α3ß4 ligand (S)-3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)quinuclidine ((S)-T1). (S)-[18F]T1 was synthesized from ethynyl-4-[18F]fluorobenzene ([18F]5) and (S)-azidoquinuclidine by click reaction. After a synthesis time of 130min (S)-[18F]T1 was obtained with a radiochemical yield (non-decay corrected) of 4.3±1.3%, a radiochemical purity of >99% and a molar activity of >158 GBq/µmol. The brain uptake and the brain-to-blood ratio of (S)-[18F]T1 in mice at 30min post injection were 2.02 (SUV) and 6.1, respectively. According to an ex-vivo analysis, the tracer remained intact (>99%) in brain. Only one major radiometabolite was detected in plasma and urine samples. In-vitro autoradiography on pig brain slices revealed binding of (S)-[18F]T1 to brain regions associated with the expression of α3ß4 nAChRs, which could be reduced by the α3ß4 nAChR selective drug AT-1001. These findings make (S)-[18F]T1 a potential tool for the non-invasive imaging of α3ß4 nAChRs in the brain by PET.


Assuntos
Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Receptores Nicotínicos/metabolismo , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Humanos , Ligantes , Camundongos , Imagem Molecular , Quinuclidinas/síntese química , Quinuclidinas/química , Compostos Radiofarmacêuticos/química , Sus scrofa , Distribuição Tecidual
10.
Eur J Nucl Med Mol Imaging ; 44(6): 1042-1050, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28120003

RESUMO

PURPOSE: The α7 nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α7 nAChRs PET radioligands, [18F]ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [18F]DBT-10 (7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [18F]ASEM in humans. METHODS: PET scans with high specific activity [18F]ASEM or [18F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [18F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [18F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [18F]ASEM distribution volume (V T). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V T was assessed. RESULTS: In the rhesus monkey brain [18F]ASEM and [18F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [18F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [18F]ASEM V T. [18F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [18F]ASEM V T in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V T values ranging from 19.6 ± 2.5 mL/cm3 in cerebellum to 25.9 ± 2.9 mL/cm3 in thalamus. Test-retest variability of V T was 11.7 ± 9.8%. CONCLUSIONS: These results confirm [18F]ASEM as a suitable radiotracer for the imaging and quantification of α7 nAChRs in humans.


Assuntos
Compostos Azabicíclicos , Óxidos S-Cíclicos , Tomografia por Emissão de Pósitrons/métodos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Macaca mulatta , Masculino , Reprodutibilidade dos Testes
11.
J Labelled Comp Radiopharm ; 60(1): 36-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896836

RESUMO

Cyclic nucleotide phosphodiesterase 10A (PDE10A) regulates the level of the second messengers cAMP and cGMP in particular in brain regions assumed to be associated with neurodegenerative and psychiatric diseases. A better understanding of the pathophysiological role of the expression of PDE10A could be obtained by quantitative imaging of the enzyme by positron emission tomography (PET). Thus, in this study we developed, radiolabeled, and evaluated a new PDE10A radioligand, 8-bromo-1-(6-[18 F]fluoropyridin-3-yl)-3,4-dimethylimidazo[1,5-a]quinoxaline ([18 F]AQ28A). [18 F]AQ28A was radiolabeled by both nucleophilic bromo-to-fluoro or nitro-to-fluoro exchange using K[18 F]F-K2.2.2 -carbonate complex with different yields. Using the superior nitro precursor, we developed an automated synthesis on a Tracerlab FX F-N module and obtained [18 F]AQ28A with high radiochemical yields (33 ± 6%) and specific activities (96-145 GBq·µmol-1 ) for further evaluation. Initially, we investigated the binding of [18 F]AQ28A to the brain of different species by autoradiography and observed the highest density of binding sites in striatum, the brain region with the highest PDE10A expression. Subsequent dynamic PET studies in mice revealed a region-specific accumulation of [18 F]AQ28A in this region, which could be blocked by preinjection of the selective PDE10A ligand MP-10. In conclusion, the data suggest [18 F]AQ28A is a suitable candidate for imaging of PDE10A in rodent brain by PET.


Assuntos
Radioisótopos de Flúor/química , Imidazóis/síntese química , Diester Fosfórico Hidrolases/metabolismo , Quinoxalinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Animais , Encéfalo/diagnóstico por imagem , Feminino , Imidazóis/farmacocinética , Ligantes , Camundongos , Tomografia por Emissão de Pósitrons , Ligação Proteica , Quinoxalinas/farmacocinética , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Suínos , Distribuição Tecidual
12.
ACS Med Chem Lett ; 7(10): 890-895, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27774124

RESUMO

The novel quinuclidine anti-1,2,3-triazole derivatives T1-T6 were designed based on the structure of QND8. The binding studies revealed that the stereochemistry at the C3 position of the quinuclidine scaffold plays an important role in the nAChR subtype selectivity. Whereas the (R)-enantiomers are selective to α7 over α4ß2 (by factors of 44-225) and to a smaller degree over α3ß4 (3-33), their (S)-counterparts prefer α3ß4 over α4ß2 (62-237) as well as over α7 (5-294). The (R)-derivatives were highly selective to α7 over α3ß4 subtypes compared to (RS)- and (R)-QND8. The (S)-enantiomers are 5-10 times more selective to α4ß2 than their (R) forms. The overall strongest affinity is observed for the (S)-enantiomer binding to α3ß4 (Ki, 2.25-19.5 nM) followed by their (R)-counterpart binding to α7 (Ki, 22.5-117 nM), with a significantly weaker (S)-enantiomer binding to α4ß2 (Ki, 414-1980 nM) still above the very weak respective (R)-analogue affinity (Ki, 5059-10436 nM).

13.
Appl Radiat Isot ; 114: 57-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27183376

RESUMO

Radiopharmacological investigations of [(18)F]NS14490 have proven that this radiotracer could be a potential PET radiotracer for imaging of alpha7 nicotinic acetylcholine receptor particularly with regard to vulnerable plaques of diseased vessels. For further optimisation of the previously automated one-pot radiosynthesis of [(18)F]NS14490 using a tosylate precursor, precursors with other leaving groups (nosylate and mosylate) were synthesized and compared with the tosylate with respect to their reactivities towards [(18)F]fluoride. The use of these different precursors resulted in comparable labelling yields of [(18)F]NS14490. A novel mosylate precursor was synthesized and evaluated, which has revealed a higher stability during a storage period of five months compared to the corresponding tosylate and nosylate.


Assuntos
Indóis/síntese química , Oxidiazóis/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Sulfonatos de Arila/química , Benzenossulfonatos/síntese química , Benzenossulfonatos/química , Estabilidade de Medicamentos , Radioisótopos de Flúor/química , Indóis/química , Indóis/farmacocinética , Imagem Molecular , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacocinética , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos de Tosil/síntese química , Compostos de Tosil/química
14.
Molecules ; 21(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213312

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Tomografia por Emissão de Pósitrons , Radioisótopos/metabolismo , Humanos
15.
Eur J Med Chem ; 107: 97-108, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26562545

RESUMO

Herein we report the synthesis of fluorinated inhibitors of phosphodiesterase 10A (PDE10A) which can be used potentially as lead structure for the development of a (18)F-labeled PDE10A imaging agent for positron emission tomography. The use of ortho-fluoropyridines as residues could potentially enable the introduction of (18)F through nucleophilic substitution for radiolabeling purposes. 2-Fluoropyridines are introduced by a Suzuki coupling at different positions of the molecule. The reference compounds, 1,8-dipyridinylimidazo[1,5-a]quinoxalines and 1-pyridinylimidazo[1,5-a]quinoxalines, show inhibitory potencies at best in the subnanomolar range and selectivity factors greater than 38 against other PDE's. 1,8-Dipyridinylimidazo[1,5-a]quinoxalines are more potent inhibitors than 1-pyridinylimidazo[1,5-a]quinoxalines. Using 2-fluoro-3-pyridinyl as residue provided the most potent inhibitors 16 (IC50 = 0.12 nM), 17 (IC50 = 0.048 nM) and 32 (IC50 = 0.037 nM).


Assuntos
Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Quinoxalinas/química , Bromo/química , Técnicas de Química Sintética , Usos Diagnósticos de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Tomografia por Emissão de Pósitrons/métodos , Relação Estrutura-Atividade
16.
Eur J Nucl Med Mol Imaging ; 43(3): 537-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26455500

RESUMO

PURPOSE: Positron emission tomography (PET) radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[(18)F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([(18)F]DBT-10), in nonhuman primates. METHODS: [(18)F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [(18)F]DBT-10 PET, with measurement of [(18)F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [(18)F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (V T/f P). RESULTS: [(18)F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/µmol at end of synthesis. Metabolism of [(18)F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55%. Uptake of [(18)F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4%. No evidence for radiolabeled [(18)F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated V T/f P values were 193-376 ml/cm(3) across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose-dependent blockade of [(18)F]DBT-10 binding by structural analog ASEM was observed throughout the brain, and occupancy plots yielded a V ND/f P estimate of 20 ± 16 ml/cm(3). CONCLUSION: These results demonstrate suitable kinetic properties of [(18)F]DBT-10 for in vivo quantification of α7-nAChR binding in nonhuman primates.


Assuntos
Compostos Azabicíclicos/química , Encéfalo/diagnóstico por imagem , Óxidos S-Cíclicos/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptor Nicotínico de Acetilcolina alfa7/química , Animais , Compostos Azabicíclicos/farmacocinética , Cromatografia Líquida de Alta Pressão , Óxidos S-Cíclicos/farmacocinética , Feminino , Radioisótopos de Flúor , Cinética , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Compostos Radiofarmacêuticos/farmacocinética
17.
Molecules ; 20(10): 18387-421, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473809

RESUMO

Changes in the expression of α7 nicotinic acetylcholine receptors (α7 nAChRs) in the human brain are widely assumed to be associated with neurological and neurooncological processes. Investigation of these receptors in vivo depends on the availability of imaging agents such as radioactively labelled ligands applicable in positron emission tomography (PET). We report on a series of new ligands for α7 nAChRs designed by the combination of dibenzothiophene dioxide as a novel hydrogen bond acceptor functionality with diazabicyclononane as an established cationic center. To assess the structure-activity relationship (SAR) of this new basic structure, we further modified the cationic center systematically by introduction of three different piperazine-based scaffolds. Based on in vitro binding affinity and selectivity, assessed by radioligand displacement studies at different rat and human nAChR subtypes and at the structurally related human 5-HT3 receptor, we selected the compound 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-fluorodibenzo-[b,d]thiophene 5,5-dioxide (10a) for radiolabeling and further evaluation in vivo. Radiosynthesis of [18F]10a was optimized and transferred to an automated module. Dynamic PET imaging studies with [18F]10a in piglets and a monkey demonstrated high uptake of radioactivity in the brain, followed by washout and target-region specific accumulation under baseline conditions. Kinetic analysis of [18F]10a in pig was performed using a two-tissue compartment model with arterial-derived input function. Our initial evaluation revealed that the dibenzothiophene-based PET radioligand [18F]10a ([18F]DBT-10) has high potential to provide clinically relevant information about the expression and availability of α7 nAChR in the brain.


Assuntos
Radioisótopos de Flúor/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores 5-HT3 de Serotonina/metabolismo , Tiofenos/farmacocinética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Compostos Aza/química , Encéfalo/metabolismo , Mapeamento Encefálico , Radioisótopos de Flúor/metabolismo , Haplorrinos , Humanos , Ligação de Hidrogênio , Cinética , Ligantes , Óxidos , Piperazinas/química , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Ratos , Relação Estrutura-Atividade , Suínos , Tiofenos/síntese química , Tiofenos/metabolismo , Distribuição Tecidual
18.
Eur J Med Chem ; 100: 50-67, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071858

RESUMO

To verify vesamicol as lead structure in the development of radioligands for imaging of VAChT in the brain by PET, we systematically modified this molecule and investigated four different groups of derivatives. Structural changes were conducted in all three ring systems A, B, and C resulting in a library of different vesamicol analogs. Based on their in vitro binding affinity toward VAChT as well as σ1 and σ2 receptors, we performed a structure-affinity relationship (SAR) study regarding both affinity and selectivity. The compounds possessed VAChT affinities in the range of 1.32 nM (benzovesamicol) to >10 µM and selectivity factors from 0.1 to 73 regarding σ1 and σ2 receptors, respectively. We could confirm the exceptional position of benzovesamicols as most affine VAChT ligands. However, we also observed that most of the compounds with high VAChT affinity demonstrated considerable affinity in particular to the σ1 receptor. Finally, none of the various vesamicol analogs in all four groups showed an in vitro binding profile suitable for specific VAChT imaging in the brain.


Assuntos
Piperidinas/farmacologia , Proteínas Vesiculares de Transporte de Acetilcolina/antagonistas & inibidores , Animais , Encéfalo , Relação Dose-Resposta a Droga , Feminino , Imagem Molecular , Estrutura Molecular , Células PC12 , Piperidinas/síntese química , Piperidinas/química , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
19.
Molecules ; 20(6): 9591-615, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016549

RESUMO

Phosphodiesterase 2A (PDE2A) is highly and specifically expressed in particular brain regions that are affected by neurological disorders and in certain tumors. Development of a specific PDE2A radioligand would enable molecular imaging of the PDE2A protein via positron emission tomography (PET). Herein we report on the syntheses of three novel fluoroalkylated triazine derivatives (TA2-4) and on the evaluation of their effect on the enzymatic activity of human PDE2A. The most potent PDE2A inhibitors were 18F-radiolabelled ([18F]TA3 and [18F]TA4) and investigated regarding their potential as PET radioligands for imaging of PDE2A in mouse brain. In vitro autoradiography on rat brain displayed region-specific distribution of [18F]TA3 and [18F]TA4, which is consistent with the expression pattern of PDE2A protein. Metabolism studies of both [18F]TA3 and [18F]TA4 in mice showed a significant accumulation of two major radiometabolites of each radioligand in brain as investigated by micellar radio-chromatography. Small-animal PET/MR studies in mice using [18F]TA3 revealed a constantly increasing uptake of activity in the non-target region cerebellum, which may be caused by the accumulation of brain penetrating radiometabolites. Hence, [18F]TA3 and [18F]TA4 are exclusively suitable for in vitro investigation of PDE2A. Nevertheless, further structural modification of these promising radioligands might result in metabolically stable derivatives.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Marcação por Isótopo/métodos , Neuroimagem/métodos , Inibidores de Fosfodiesterase/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Triazinas/farmacocinética , Animais , Autorradiografia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Feminino , Radioisótopos de Flúor , Humanos , Camundongos , Permeabilidade , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Ratos , Ratos Sprague-Dawley , Triazinas/química , Triazinas/metabolismo
20.
EJNMMI Res ; 4: 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136512

RESUMO

BACKGROUND: The α7 nicotinic acetylcholine receptor (nAChR) is an important molecular target in neuropsychiatry and oncology. Development of applicable highly specific radiotracers has been challenging due to comparably low protein expression. To identify novel ligands as candidates for positron emission tomography (PET), a library of diazabicyclononane compounds was screened regarding affinity and specificity towards α7 nAChRs. From these, [(18)F]NS14490 has been shown to yield reliable results in organ distribution studies; however, the radiosynthesis of [(18)F]NS14490 required optimization and automation to obtain the radiotracer in quantities allowing dynamic PET studies in piglets. METHODS: Automated radiosynthesis of [(18)F]NS14490 has been performed by [(18)F]fluorination with the tosylate precursor in the TRACERlab™ FX F-N synthesis module (Waukesha, WI, USA). After optimization, the radiochemical yield of [(18)F]NS14490 was consistently approximately 35%, and the total synthesis time was about 90 min. The radiotracer was prepared with >92% radiochemical purity, and the specific activity at the end of the synthesis was 226 ± 68 GBq µmol(-1). PET measurements were performed in young pigs to investigate the metabolic stability and cerebral binding of [(18)F]NS14490 without and with administration of the α7 nAChR partial agonist NS6740 in baseline and blocking conditions. RESULTS: The total distribution volume relative to the metabolite-corrected arterial input was 3.5 to 4.0 mL g(-1) throughout the telencephalon and was reduced to 2.6 mL g(-1) in animals treated with NS6740. Assuming complete blockade, this displacement indicated a binding potential (BPND) of approximately 0.5 in the brain of living pigs. In addition, evidence for specific binding in major brain arteries has been obtained. CONCLUSION: [(18)F]NS14490 is not only comparable to other preclinically investigated PET radiotracers for imaging of α7 nAChR in brain but also could be a potential PET radiotracer for imaging of α7 nAChR in vulnerable plaques of diseased vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA