Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(5): 791-803, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38652897

RESUMO

Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1ß altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.


Assuntos
Células Epiteliais , Fumaça , Humanos , Fumaça/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Linhagem Celular , Queima de Resíduos a Céu Aberto
2.
Inhal Toxicol ; 35(13-14): 324-332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054423

RESUMO

OBJECTIVE: Due to recent increases in the use of vaping devices, there is a high demand for research addressing the respiratory health effects of vaping products. Given the constantly changing nature of the vaping market with new devices, flavors, metals, and other chemicals rapidly emerging, there is a need for inexpensive and highly adaptable vaping device exposure systems. Here, we describe the design and validation of a novel in vitro aerosol exposure system for toxicity testing of vaping devices. MATERIALS AND METHODS: We developed an inexpensive, open-source in vitro vaping device exposure system that produces even deposition, can be adapted for different vaping devices, and allows for experiments to be performed under physiological conditions. The system was then validated with deposition testing and a representative exposure with human bronchial epithelial cells (hBECs). RESULTS: The Vaping Product Exposure System (VaPES) produced sufficient and uniform deposition for dose-response studies and was precise enough to observe biological responses to vaping exposures. VaPES was adapted to work with both pod and cartridge-based vaping devices. CONCLUSION: We have designed and validated a novel vaping device exposure system that will eliminate the need to use high-cost commercial exposure systems, lowering the barrier to entry of physiologically relevant vaping studies.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Vaping/efeitos adversos , Aerossóis , Metais
3.
Respir Res ; 24(1): 187, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443038

RESUMO

As the public health burden of air pollution continues to increase, new strategies to mitigate harmful health effects are needed. Dietary antioxidants have previously been explored to protect against air pollution-induced lung injury producing inconclusive results. Inhaled (pulmonary or nasal) administration of antioxidants presents a more promising approach as it could directly increase antioxidant levels in the airway surface liquid (ASL), providing protection against oxidative damage from air pollution. Several antioxidants have been shown to exhibit antioxidant, anti-inflammatory, and anti-microbial properties in in vitro and in vivo models of air pollution exposure; however, little work has been done to translate these basic research findings into practice. This narrative review summarizes these findings and data from human studies using inhaled antioxidants in response to air pollution, which have produced positive results, indicating further investigation is warranted. In addition to human studies, cell and murine studies should be conducted using more relevant models of exposure such as air-liquid interface (ALI) cultures of primary cells and non-aqueous apical delivery of antioxidants and pollutants. Inhalation of antioxidants shows promise as a protective intervention to prevent air pollution-induced lung injury and exacerbation of existing lung disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pneumopatias , Lesão Pulmonar , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pneumopatias/induzido quimicamente , Pneumopatias/prevenção & controle , Pulmão , Poluentes Atmosféricos/efeitos adversos
4.
J Immunol Methods ; 517: 113473, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059295

RESUMO

BACKGROUND: Multiplexed protein analysis platforms are a novel and efficient way to characterize biomarkers in a variety of biological samples. Few studies have compared protein quantitation and reproducibility of results across platforms. We utilize a novel nasosorption technique to collect nasal epithelial lining fluid (NELF) from healthy subjects, and compare the detection of proteins in NELF across three commonly used platforms. METHODS: NELF was collected from both nares of twenty healthy subjects using an absorbent fibrous matrix and analyzed using three different protein analysis platforms: Luminex, Meso Scale Discovery (MSD), and Olink. Twenty-three protein analytes were shared across two or more platforms, and correlations across platforms were assessed using Spearman correlations. RESULTS: Among the twelve proteins represented on all three platforms, IL1⍺ and IL6 were very highly correlated (Spearman correlation coefficient [r] ≥ 0.9); CCL3, CCL4, and MCP1 were highly correlated (r ≥ 0.7); and IFNÉ£, IL8, and TNF⍺ were moderately correlated (r ≥ 0.5). Four proteins (IL2, IL4, IL10, IL13) were poorly correlated across at least two platform comparisons (r < 0.5); for two of these proteins (IL10 and IL13), the majority of observations were below the limits of detection for Olink and Luminex. DISCUSSION: Multiplexed protein analysis platforms are a promising method for analyzing nasal samples for biomarkers of interest in respiratory health research. For most proteins evaluated, there was good correlation across platforms, although results were less consistent for low abundance proteins. Of the three platforms tested, MSD had the highest sensitivity for analyte detection.


Assuntos
Citocinas , Interleucina-10 , Humanos , Citocinas/metabolismo , Voluntários Saudáveis , Reprodutibilidade dos Testes , Interleucina-13 , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA