Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0233779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470059

RESUMO

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fermentação , Frutose/metabolismo , Glucosiltransferases/genética , Mutação com Perda de Função , Trealose/biossíntese
2.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606352

RESUMO

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Assuntos
Enzimas/química , Escherichia coli/enzimologia , Evolução Molecular , Isoformas de Proteínas/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Família Multigênica , Óperon , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ribossomos/química , Análise de Sequência de RNA , Transcriptoma
3.
Mol Biol Cell ; 29(8): 897-910, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444955

RESUMO

Metabolic dysregulation leading to sugar-phosphate accumulation is toxic in organisms ranging from bacteria to humans. By comparing two models of sugar-phosphate toxicity in Saccharomyces cerevisiae, we demonstrate that toxicity occurs, at least in part, through multiple, isomer-specific mechanisms, rather than a single general mechanism.


Assuntos
Frutosefosfatos/toxicidade , Galactosefosfatos/toxicidade , Genes Supressores , Saccharomyces cerevisiae/metabolismo , Meios de Cultura/química , Frutosefosfatos/metabolismo , Galactosefosfatos/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Mutação , Saccharomyces cerevisiae/genética
4.
Cell Host Microbe ; 21(6): 731-741.e10, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28618269

RESUMO

Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Antígenos de Protozoários , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , DNA de Protozoário/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes de Protozoários , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Parasita , Motivos de Nucleotídeos/genética , Plasmodium , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Regiões Promotoras Genéticas , Proteínas Recombinantes , Elementos Reguladores de Transcrição
5.
Proc Natl Acad Sci U S A ; 112(19): 6116-21, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918382

RESUMO

Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation).


Assuntos
Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Trealose/metabolismo , Transporte Biológico , Carbono/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Temperatura Alta , Maltose/metabolismo , Metabolômica
6.
Nucleic Acids Res ; 42(13): 8271-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957599

RESUMO

We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5'-TGCAT-3', 5'-CACACA-3' and G-box motifs (5'-G[T/C]GGGG-3'). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination.


Assuntos
Cryptosporidium parvum/genética , Família Multigênica , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Alveolados/genética , Apicomplexa/genética , Sítios de Ligação , Cryptosporidium parvum/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Redes Reguladoras de Genes , Motivos de Nucleotídeos , Filogenia , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA