Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(6): 2182-2197, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001863

RESUMO

Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.


Assuntos
Glicoesfingolipídeos/biossíntese , Phycodnaviridae/metabolismo , Ecologia , Haptófitas/virologia , Modelos Teóricos , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Phycodnaviridae/patogenicidade , Serina C-Palmitoiltransferase , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral
2.
ISME J ; 13(4): 1019-1031, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30607029

RESUMO

Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms.


Assuntos
Haptófitas/virologia , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico/biossíntese , Phycodnaviridae/fisiologia , Antioxidantes/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Fitoplâncton/virologia
3.
Nat Microbiol ; 3(5): 537-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531367

RESUMO

Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.


Assuntos
Carbono/metabolismo , Haptófitas/virologia , Phycodnaviridae/fisiologia , Ciclo do Carbono , Cadeia Alimentar , Haptófitas/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Fitoplâncton/virologia , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Água do Mar/virologia
4.
Free Radic Biol Med ; 96: 199-210, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27112665

RESUMO

Electron paramagnetic resonance (EPR) is one of the few methods that allows for the unambiguous detection of nitric oxide (NO). However, the dithiocarbamate-iron spin traps employed with this method inhibit the activity of nitric oxide synthase and catalyze NO production from nitrite. These disadvantages limit EPR's application to biological NO detection. We present a liposome-encapsulated spin-trap (LEST) method for the capture and in situ detection of NO by EPR. The method shows a linear response for [NO]≥4µM and can detect [NO]≥40nM in a 500µL sample (≥20 pmol). The kinetics of NO production can be followed in real time over minutes to hours. LEST does not inhibit the activity of inducible nitric oxide synthase or nitrate reductase and shows minimal abiotic NO production in the presence of nitrite and NADH. Nitrate reductase-like activity is detected in cell lysates of the coccolithophore Emiliania huxleyi and is elevated in virus-infected culture. This method shows particular promise for NO detection in cell lysates and crude preparations of NO-producing tissues.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Óxido Nítrico/isolamento & purificação , Detecção de Spin/métodos , Haptófitas/química , Ferro/química , Cinética , Lipossomos/química , NAD/química , Óxido Nítrico/metabolismo , Nitritos/química , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA