Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113141, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713312

RESUMO

Emerging evidence suggests that peripheral immune cells contribute to Alzheimer's disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/patologia , Mastócitos/patologia , Camundongos Transgênicos , Doença de Alzheimer/patologia , Cognição , Fatores Imunológicos
2.
J Sleep Res ; : e13919, 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211393

RESUMO

Attention is impaired in many neuropsychiatric disorders, as well as by sleep disruption, leading to decreased workplace productivity and increased risk of accidents. Thus, understanding the neural substrates is important. Here we test the hypothesis that basal forebrain neurons that contain the calcium-binding protein parvalbumin modulate vigilant attention in mice. Furthermore, we test whether increasing the activity of basal forebrain parvalbumin neurons can rescue the deleterious effects of sleep deprivation on vigilance. A lever release version of the rodent psychomotor vigilance test was used to assess vigilant attention. Brief and continuous low-power optogenetic excitation (1 s, 473 nm @ 5 mW) or inhibition (1 s, 530 nm @ 10 mW) of basal forebrain parvalbumin neurons was used to test the effect on attention, as measured by reaction time, under control conditions and following 8 hr of sleep deprivation by gentle handling. Optogenetic excitation of basal forebrain parvalbumin neurons that preceded the cue light signal by 0.5 s improved vigilant attention as indicated by quicker reaction times. By contrast, both sleep deprivation and optogenetic inhibition slowed reaction times. Importantly, basal forebrain parvalbumin excitation rescued the reaction time deficits in sleep-deprived mice. Control experiments using a progressive ratio operant task confirmed that optogenetic manipulation of basal forebrain parvalbumin neurons did not alter motivation. These findings reveal for the first time a role for basal forebrain parvalbumin neurons in attention, and show that increasing their activity can compensate for disruptive effects of sleep deprivation.

3.
Brain Res Bull ; 188: 47-58, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878679

RESUMO

Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.


Assuntos
Prosencéfalo Basal , Locus Cerúleo , Acetilcolina , Nível de Alerta/fisiologia , Atenção/fisiologia , Prosencéfalo Basal/metabolismo , Locus Cerúleo/metabolismo , Norepinefrina , Parvalbuminas/metabolismo , Vigília/fisiologia
4.
Sci Rep ; 11(1): 9031, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907230

RESUMO

Abnormalities in electroencephalographic (EEG) biomarkers occur in patients with schizophrenia and those clinically at high risk for transition to psychosis and are associated with cognitive impairment. Converging evidence suggests N-methyl-D-aspartate receptor (NMDAR) hypofunction plays a central role in the pathophysiology of schizophrenia and likely contributes to biomarker impairments. Thus, characterizing these biomarkers is of significant interest for early diagnosis of schizophrenia and development of novel treatments. We utilized in vivo EEG recordings and behavioral analyses to perform a battery of electrophysiological biomarkers in an established model of chronic NMDAR hypofunction, serine racemase knockout (SRKO) mice, and their wild-type littermates. SRKO mice displayed impairments in investigation-elicited gamma power that corresponded with reduced short-term social recognition and enhanced background (pre-investigation) gamma activity. Additionally, SRKO mice exhibited sensory gating impairments in both evoked-gamma power and event-related potential amplitude. However, other biomarkers including the auditory steady-state response, sleep spindles, and state-specific power spectral density were generally neurotypical. In conclusion, SRKO mice demonstrate how chronic NMDAR hypofunction contributes to deficits in certain translationally-relevant EEG biomarkers altered in schizophrenia. Importantly, our gamma band findings suggest an aberrant signal-to-noise ratio impairing cognition that occurs with NMDAR hypofunction, potentially tied to impaired task-dependent alteration in functional connectivity.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Ritmo Gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Filtro Sensorial , Comportamento Social
5.
Mol Psychiatry ; 26(7): 3461-3475, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32690865

RESUMO

Increases in broadband cortical electroencephalogram (EEG) power in the gamma band (30-80 Hz) range have been observed in schizophrenia patients and in mouse models of schizophrenia. They are also seen in humans and animals treated with the psychotomimetic agent ketamine. However, the mechanisms which can result in increased broadband gamma power and the pathophysiological implications for cognition and behavior are poorly understood. Here we report that tonic optogenetic manipulation of an ascending arousal system bidirectionally tunes cortical broadband gamma power, allowing on-demand tests of the effect on cortical processing and behavior. Constant, low wattage optogenetic stimulation of basal forebrain (BF) neurons containing the calcium-binding protein parvalbumin (PV) increased broadband gamma frequency power, increased locomotor activity, and impaired novel object recognition. Concomitantly, task-associated gamma band oscillations induced by trains of auditory stimuli, or exposure to novel objects, were impaired, reminiscent of findings in schizophrenia patients. Conversely, tonic optogenetic inhibition of BF-PV neurons partially rescued the elevated broadband gamma power elicited by subanesthetic doses of ketamine. These results support the idea that increased cortical broadband gamma activity leads to impairments in cognition and behavior, and identify BF-PV activity as a modulator of this activity. As such, BF-PV neurons may represent a novel target for pharmacotherapy in disorders such as schizophrenia which involve aberrant increases in cortical broadband gamma activity.


Assuntos
Prosencéfalo Basal , Esquizofrenia , Animais , Nível de Alerta , Prosencéfalo Basal/metabolismo , Eletroencefalografia , Humanos , Camundongos , Optogenética , Parvalbuminas/metabolismo , Esquizofrenia/genética
6.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413301

RESUMO

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Assuntos
Estimulação Acústica , Nível de Alerta/fisiologia , Carboidratos/administração & dosagem , Neurônios/fisiologia , Ração Animal/análise , Animais , Prosencéfalo Basal/fisiologia , Dieta , Camundongos , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
7.
PLoS One ; 14(7): e0219522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291348

RESUMO

Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.


Assuntos
Região Hipotalâmica Lateral/fisiologia , Motivação/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Condicionamento Operante/fisiologia , Comportamento Alimentar/psicologia , Feminino , Região Hipotalâmica Lateral/citologia , Masculino , Camundongos , Modelos Animais , Vias Neurais/fisiologia , Neurônios/fisiologia , Recompensa , Técnicas Estereotáxicas , Sinapses , Área Tegmentar Ventral/citologia
8.
Neurobiol Learn Mem ; 133: 204-213, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27427328

RESUMO

The surprising omission of a reinforcer can enhance the associability of the stimuli that were present when the reward prediction error was induced, so that they more readily enter into new associations in the future. Previous research from this laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. These elements include the amygdala, the midbrain substantia nigra, the basal forebrain substantia innominata, the dorsolateral striatum, the secondary visual cortex, and the posterior parietal cortex. Here, we found that consolidation of a surprise-enhanced associability memory in a serial prediction task depends on processing in the amygdala central nucleus (CeA) after completion of sessions that included the surprising omission of an expected event. Post-surprise infusions of anisomycin, lidocaine, or muscimol prevented subsequent display of surprise-enhanced associability. Because previous studies indicated that CeA function is unnecessary for the expression of associability enhancements that were induced previously when CeA function was intact (Holland & Gallagher, 2006), we interpreted these results as indicating that post-surprise activity of CeA ("surprise replay") is necessary for the consolidation of altered associability memories elsewhere in the brain, such as the posterior parietal cortex (Schiffino et al., 2014a).


Assuntos
Atenção/fisiologia , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/fisiologia , Sinais (Psicologia) , Consolidação da Memória/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans
9.
Eur J Neurosci ; 44(2): 1870-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27225533

RESUMO

Considerable evidence indicates that reinforcement prediction error, the difference between the obtained and expected reinforcer values, modulates attention to potential cues for reinforcement. The surprising delivery or omission of a reinforcer enhances the associability of the stimuli that were present when the error was induced, so that they more readily enter into new associations in the future. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. A key finding was that the rat posterior parietal cortex was essential during the encoding, consolidation and retrieval of associability memories that were altered by the surprising omission of an expected event in a serial prediction task. Here, we found that the function of adjacent secondary visual cortex was critical only to the expression of altered cue associability in that same task. This specialization of function is discussed in the context of broader cortical and subcortical networks for modulation of attention in associative learning, as well as recent anatomical investigations that suggest that the rodent posterior parietal cortex overlaps with and may subsume secondary visual cortex.


Assuntos
Antecipação Psicológica , Aprendizagem por Associação , Córtex Visual/fisiologia , Animais , Atenção , Sinais (Psicologia) , Masculino , Ratos , Ratos Long-Evans
10.
Neurobiol Learn Mem ; 131: 207-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948122

RESUMO

Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE.


Assuntos
Aprendizagem por Associação/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Condicionamento Clássico/fisiologia , Animais , Humanos
11.
Eur J Neurosci ; 42(5): 2203-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108257

RESUMO

The dorsolateral striatum (DLS) is frequently implicated in sensory-motor integration, including the performance of sensory orienting responses (ORs) and learned stimulus-response habits. Our laboratory previously identified a role for the DLS in rats' performance of conditioned ORs to Pavlovian cues for food delivery. Here, we considered whether DLS is also critical to another aspect of attention in associative learning, the surprise-induced enhancement of cue associability. A large behavioral literature shows that a cue present when an expected event is omitted enters into new associations more rapidly when that cue is subsequently paired with food. Research from our laboratory has shown that both cue associability enhancements and conditioned ORs depend on the function of a circuit that includes the amygdala central nucleus and the substantia nigra pars compacta. In three experiments, we explored the involvement of DLS in surprise-induced associability enhancements, using a three-stage serial prediction task that permitted separation of DLS function in registering surprise (prediction error) and enhancing cue associability, and in using that increased associability to learn more rapidly about that cue later. The results showed that DLS is critical to the expression, but not the establishment, of the enhanced cue associability normally produced by surprise in this task. They extend the role of DLS and the amygdalo-nigro-striatal circuit underlying learned orienting to more subtle aspects of attention in associative learning, but are consistent with the general notion that DLS is more important in the expression of previously acquired tendencies than in their acquisition.


Assuntos
Antecipação Psicológica/fisiologia , Aprendizagem por Associação/fisiologia , Corpo Estriado/fisiologia , Estimulação Acústica , Animais , Atenção/fisiologia , Percepção Auditiva/fisiologia , Núcleo Central da Amígdala/fisiologia , Corpo Estriado/efeitos dos fármacos , Sinais (Psicologia) , Alimentos , Lidocaína/farmacologia , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Parte Compacta da Substância Negra/fisiologia , Estimulação Luminosa , Ratos Long-Evans , Percepção Visual/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
12.
Eur J Neurosci ; 39(4): 640-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24236913

RESUMO

Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks.


Assuntos
Aprendizagem por Associação , Atenção , Memória , Lobo Parietal/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans
14.
Dev Psychobiol ; 54(7): 714-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22127879

RESUMO

The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning and context-shock associations occur on separate occasions. The CPFE with an immediate shock emerges between Postnatal Day (PND) 17 and 24 in the rat and depends on hippocampal NMDA-receptor function in PND 24 rats (Schiffino et al. [2011] Neurobiology of Learning and Memory 95(2):190-198). This study investigated this ontogenetic effect further and reports three findings: First, the CPFE is absent on PND 19 but emerges modestly in rats given exposure on PND 21. Second, the absence of the CPFE on PND 17 does not reflect inability to consolidate the context-shock association established on the training day. Lastly, the CPFE on PND 24 requires exposure to the combined features of the context. These results are the first to show that the early development of contextual fear conditioning depends on conjunctive representations and that processes underlying the CPFE begin to emerge around PND 21 in the rat.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Memória/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Reação de Congelamento Cataléptica , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Masculino , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/fisiologia
15.
Neurobiol Learn Mem ; 95(2): 190-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21129493

RESUMO

Contextual fear conditioning emerges around post-natal day (PD) 23 in the rat. This is thought to reflect hippocampus-dependent conjunctive learning, which binds the individual features of the context into a unified representation (Rudy, 1993). However, context conditioning can also be supported by hippocampus-independent, feature-based simple associations (Rudy, 2009) and these may operate at PD 23-24 (Pugh & Rudy, 1996). To address this issue, we studied the ontogeny of a variant of contextual fear conditioning, termed the context-preexposure-facilitation-effect (CPFE), in which exposure to context and (immediate) foot shock occur on successive occasions. This variant requires conjunctive as opposed to feature-based simple associations (Rudy, 2009). We tested PD 17, 24, and 31 rats on the CPFE vs. conventional context conditioning (Exp. 1) and on the CPFE with stronger reinforcement (Exp. 2). The CPFE emerged on PD 24 regardless of reinforcer strength and in parallel with context conditioning. Infusions of the NMDA-receptor antagonist, MK-801, into the dorsal hippocampus just before pre-exposure on PD 24 eliminated the CPFE, whereas infusions occurring after pre-exposure had no effect (Exp. 3). These findings demonstrate a role of hippocampal NMDA receptors in the CPFE as early as PD 24 and implicate conjunctive learning mechanisms in the ontogeny of contextual fear conditioning.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Análise de Variância , Animais , Condicionamento Clássico/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Eletrochoque , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA