Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228161

RESUMO

Reductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S. multivorans, unlike other commonly oxygen-sensitive OHRB, for bioremediation, e.g. at oxic/anoxic interphases. Additionally, this has an impact on our understanding of the global halogen cycle. Sulfurospirillum multivorans performs dehalogenation of PCE to cis-1,2-dichloroethene at oxygen concentrations below 0.19 mg/L. The redox potential of the medium electrochemically adjusted up to +400 mV had no influence on reductive dehalogenation by S. multivorans in our experiments, suggesting that higher levels of oxygen impair PCE dechlorination by inhibiting or inactivating involved enzymes. The PCE reductive dehalogenase remained active in cell extracts of S. multivorans exposed to 0.37 mg/L oxygen for more than 96 h. Analysis of the proteome revealed that superoxide reductase and cytochrome peroxidase amounts increased with 5% oxygen in the gas phase, while the response to atmospheric oxygen concentrations involved catalase and hydrogen peroxide reductase. Taken together, our results demonstrate that reductive dehalogenation by OHRB is not limited to anoxic conditions.


Assuntos
Campylobacteraceae/metabolismo , Halogenação/fisiologia , Oxigênio/metabolismo , Tetracloroetileno/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Citocromo-c Peroxidase/metabolismo , Oxirredutases/metabolismo , Proteoma/análise
2.
Data Brief ; 8: 637-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27437436

RESUMO

Sulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration). We present proteomic data of S. multivorans grown with different electron donors (formate or pyruvate) and electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). To obtain information on the cellular localization of proteins, membrane extracts and soluble fractions were separated before data collection from both fractions. The proteome analysis of S. multivorans was performed by mass spectrometry (nanoLC-MS/MS). Raw data have been deposited at ProteomeXchange, "ProteomeXchange provides globally coordinated proteomics data submission and dissemination" [1], via the PRIDE partner repository with the dataset identifier PRIDE: PXD004011. The data might support further research in organohalide respiration and in the general metabolism of free-living Epsilonproteobacteria. The dataset is associated with a previously published study "Proteomics of the organohalide-respiring Epsilonproteobacterium S. multivorans adapted to tetrachloroethene and other energy substrates" [2].

3.
Data Brief ; 7: 253-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26958645

RESUMO

The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1].

4.
Environ Microbiol ; 18(9): 3044-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26718631

RESUMO

Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Chloroflexi/metabolismo , Hidrogenase/metabolismo , Chloroflexi/enzimologia , Chloroflexi/genética , Citoplasma/genética , Citoplasma/metabolismo , Transporte de Elétrons , Halogenação , Hidrogenase/genética
5.
Sci Rep ; 5: 13794, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26387727

RESUMO

Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.


Assuntos
Metabolismo Energético/fisiologia , Epsilonproteobacteria/metabolismo , Oxirredutases/metabolismo , Tetracloroetileno/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético/genética , Epsilonproteobacteria/genética , Ferredoxinas/metabolismo , Formiatos/metabolismo , Perfilação da Expressão Gênica , Nitratos/metabolismo , Oxirredutases/genética , Consumo de Oxigênio , Análise de Componente Principal , Proteômica , Ácido Pirúvico/metabolismo , Quinonas/metabolismo
6.
Appl Environ Microbiol ; 81(2): 587-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381236

RESUMO

Polyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments. Dehalococcoides mccartyi strain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature of D. mccartyi during organohalide respiration.


Assuntos
Chloroflexi/enzimologia , Chloroflexi/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Clorados/metabolismo , Proteoma/análise
7.
J Proteomics ; 98: 59-64, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24374378

RESUMO

Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring anaerobic bacterium that is able to transform a wide range of highly relevant halogenated organic contaminants and has been detected in natural and engineered environments. In order to understand the molecular principles, we generated a protein profile of CBDB1 cultivated in a synthetic anaerobic medium with hexachlorobenzene as the sole electron acceptor. The proteome characterization through two different proteomic techniques resulted in 8491 distinct peptides corresponding to 1023 proteins that covered 70% of the annotated 1458 protein-coding sequences. From the 32 annotated reductive dehalogenases homologous genes (rdhA) we were able to detect 16 RdhA proteins. High-quality MS spectra were further used to build a spectra library to provide a platform for precise and fast proteomic searches. In addition, the derived proteome data set was used to apply a proteogenomic approach that led to a refinement of genome annotation of CBDB1. This was mostly due to protein prolongation (13 cases) and detection of translated sequences without an obvious link to existing annotations (5 cases). These data go beyond the current knowledge of the bacterial proteome and provide an expanded platform for a better understanding of the functional cellular. BIOLOGICAL SIGNIFICANCE: Anaerobic reductive dehalogenation of chlorinated organic molecules is a key process for the recycling of halogenated organic substances in natural habitats and highly relevant for groundwater bioremediation. The ability to couple reductive dehalogenation of halogenated compounds to ATP-generation via a respiratory chain is one remarkable capability prevalent in the model organism D. mccartyi strain CBDB1. Therefore, a reference proteome map was generated by comprehensive LC-MS analysis and converted into a SpectraST library to provide a platform for precise and fast shotgun proteomic searches. A proteogenomics approach led to a refinement of gene annotation of CBDB1 and will extend the current knowledge of the bacterial proteome. The approach provides an expanded platform for a better understanding of the functional cellular metabolism and thereby constitutes a tool for comparative studies of protein expression as well as further research on organohalide respiration.


Assuntos
Proteínas de Bactérias , Chloroflexi , Hexaclorocicloexano/farmacologia , Inseticidas/farmacologia , Proteoma , Proteômica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Chloroflexi/genética , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/metabolismo , Proteoma/biossíntese , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA