Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(43): 18150-18158, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677065

RESUMO

Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm-2 could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm-2 at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.

2.
Soft Matter ; 17(7): 1788-1795, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398307

RESUMO

Nano-emulsions are defined as stable oil droplets sizing below 300 nm. Their singular particularity lies in the loading capabilities of their oily core, much higher than other kinds of carrier. On the other hand, functionalizing the dynamic oil/water interface, to date, has remained a challenge. To ensure the best anchoring of the reactive functions onto the surface of the droplets, we have designed specific amphiphilic polymers (APs) based on poly(maleic anhydride-alt-1-octadecene), stabilizing the nano-emulsions instead of surfactants. Aliphatic C18 chains of the APs are anchored in the droplet core, while the hydrophilic parts of the APs are poly(ethylene glycol) (PEG) chains. In addition, PEG chains are terminated with reactive (i) azide functions in order to prove the concept of the droplet decoration with clickable rhodamine (Rh-DBCO, specifically synthesized for this study), or (ii) biotin functions to verify the potential droplet functionalization with fluorescent streptavidin (streptavidin-AF-488). This study describes AP synthesis, physico-chemical characterization of the functional droplets (electron microscopy), and finally fluorescence labeling and droplet decoration. To conclude, these APs constitute an interesting solution for the stable functionalization of nano-emulsion droplets, paving a new way for the applications of nano-emulsions in targeting drug delivery.


Assuntos
Polímeros , Tensoativos , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis
3.
ACS Nano ; 14(10): 13924-13937, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33022173

RESUMO

Fluorescent nanoparticles (NPs), owing to their superior brightness, are an attractive alternative to organic dyes. However, their cellular applications remain limited because of their large size, poor homogeneity, and nonspecific interactions in biological media. Herein, we propose a concept of monomolecular fluorescent organic nanoparticles of high brightness and very small size (10-14 nm) built of a single amphiphilic polymer bearing specially designed fluorescent dyes. We found that high PEGylation of poly(maleic anhydride-alt-1-octadecene (PMAO) favors a single-chain polymer folding into monomolecular stealth NPs with highly reduced nonspecific interactions with proteins and live cells. To ensure high stability of our NPs, the fluorophores (BODIPYs) are covalently linked to the polymer through an optimized linker. Among tested linkers of different lengths and polarity, a short medium-polar linker favoring location of the dyes at NPs interface ensures good fluorescence quantum yield and small particle size. The fluorescence brightness of these NPs has been dramatically enhanced by increasing the bulkiness of the BODIPY dyes that prevents their H-aggregation, reaching 2500000 M-1 cm-1 (extinction coefficient × quantum yield). Fluorescence microscopy revealed that the single-particle brightness of these NPs is ∼5-fold higher than that of QDot-585 using the same excitation wavelength (532 nm). Finally, when microinjected inside cells, these small and stealth NPs (10 nm diameter) distribute more evenly than 20 nm QDots inside the cytosol, showing similar spreading as a fluorescent protein. Thus, the developed monomolecular NPs, owing to their small size and stealth properties, are artificial analogues of fluorescent proteins, surpassing the latter >50-fold in terms of brightness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA