Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 7(7): 1045-1059, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264198

RESUMO

The magnitude and pace of global climate change demand ambitious and effective implementation of nationally determined contributions (NDCs). Nature-based solutions present an efficient approach to achieving mitigation, adaptation and resilience goals. Yet few nations have quantified the diverse benefits of nature-based solutions to evaluate and select ecosystem targets for their NDCs. Here we report on Belize's pursuit of innovative, evidence-based target setting by accounting for multiple benefits of blue carbon strategies. Through quantification of carbon storage and sequestration and optimization of co-benefits, we explore time-bound targets and prioritize locations for mangrove protection and restoration. We find increases in carbon benefits with larger mangrove investments, while fisheries, tourism and coastal risk-reduction co-benefits grow initially and then plateau. We identify locations, currently lacking protected status, where prioritizing blue carbon strategies would provide the greatest delivery of co-benefits to communities. These findings informed Belize's updated NDCs to include an additional 12,000 ha of mangrove protection and 4,000 ha of mangrove restoration, respectively, by 2030. Our study serves as an example for the more than 150 other countries that have the opportunity to enhance greenhouse gas sequestration and climate adaptation by incorporating blue carbon strategies that provide multiple societal benefits into their NDCs.


Assuntos
Ecossistema , Áreas Alagadas , Carbono , Mudança Climática , Sequestro de Carbono
2.
PLoS One ; 16(10): e0256707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669722

RESUMO

Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering plant community transitions, salinity effects on productivity, and changes in sediment availability. We incorporated local experimental results for plant productivity relative to inundation and salinity into a species transition model, as well as site-level estimates of organic matter decomposition. The revised modeling framework includes an improved calibration scheme that more accurately reconstructs soil profiles and incorporates parameter uncertainty through Monte Carlo simulations. Using WARMER-2, we evaluated elevation change in three tidal wetlands in the San Francisco Bay Estuary, CA, USA along an estuarine tidal and salinity gradient with varying scenarios of SLR, salinization, and changes in sediment availability. We also tested the sensitivity of marsh elevation and carbon accumulation rates to different plant productivity functions. Wetland elevation at all three sites was sensitive to changes in sediment availability, but sites with greater initial elevations or space for upland transgression persisted longer under higher SLR rates than sites at lower elevations. Using a multi-species wetland vegetation transition model for organic matter contribution to accretion, WARMER-2 projected increased elevations relative to sea levels (resilience) and higher rates of carbon accumulation when compared with projections assuming no future change in vegetation with SLR. A threshold analysis revealed that all three wetland sites were likely to eventually transition to an unvegetated state with SLR rates above 7 mm/yr. Our results show the utility in incorporating additional estuary-specific parameters to bolster confidence in model projections. The new WARMER-2 modeling framework is widely applicable to other tidal wetland ecosystems and can assist in teasing apart important drivers of wetland elevation change under SLR.


Assuntos
Sequestro de Carbono/fisiologia , Carbono/análise , Aquecimento Global/estatística & dados numéricos , Elevação do Nível do Mar/estatística & dados numéricos , Áreas Alagadas , Baías , Modelos Teóricos , Salinidade , São Francisco , Solo/química , Ondas de Maré
3.
Nature ; 567(7746): 91-95, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842636

RESUMO

Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate-carbon modelling.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Água do Mar/análise , Áreas Alagadas , Carbono/análise , Sedimentos Geológicos/química , História Antiga , Oceanos e Mares
5.
Sci Rep ; 8(1): 9478, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930337

RESUMO

Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m-3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.

6.
Nat Clim Chang ; 8(12): 1109-1112, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-32601525

RESUMO

The IPCC 2013 Wetlands Supplement provided new guidance for countries on inclusion of wetlands in their National GHG Inventories. The United States has responded by including managed coastal wetlands for the first time in its 2017 GHG Inventory report along with an updated time series in the most recent 2018 submission and plans to update the time series on an annual basis as part of its yearly submission to the United Nations Framework Convention on Climate Change (UNFCCC). The United States followed IPCC Good Practice Guidance when reporting sources and sinks associated with managed coastal wetlands. Here we show that intact vegetated coastal wetlands are a net sink for GHGs. Despite robust regulation that has protected substantial stocks of carbon, the United States continues to lose coastal wetlands to development and the largest loss of wetlands to open water occurs around the Mississippi Delta due mostly to upstream changes in hydrology and sediment delivery, and oil and gas extraction. These processes create GHG emissions. By applying comprehensive Inventory reporting, scientists in the United States have identified opportunities for reducing GHG emissions through restoration of coastal wetlands that also provide many important societal co-benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA