Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6003, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224193

RESUMO

Smut fungi comprise one of the largest groups of fungal plant pathogens causing disease in all cereal crops. They directly penetrate host tissues and establish a biotrophic interaction. To do so, smut fungi secrete a wide range of effector proteins, which suppress plant immunity and modulate cellular functions as well as development of the host, thereby determining the pathogen's lifestyle and virulence potential. The conserved effector Erc1 (enzyme required for cell-to-cell extension) contributes to virulence of the corn smut Ustilago maydis in maize leaves but not on the tassel. Erc1 binds to host cell wall components and displays 1,3-ß-glucanase activity, which is required to attenuate ß-glucan-induced defense responses. Here we show that Erc1 has a cell type-specific virulence function, being necessary for fungal cell-to-cell extension in the plant bundle sheath and this function is fully conserved in the Erc1 orthologue of the barley pathogen Ustilago hordei.


Assuntos
Ustilago , beta-Glucanas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Zea mays/metabolismo , beta-Glucanas/metabolismo
3.
Plant Cell ; 27(4): 1332-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25888589

RESUMO

The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize.


Assuntos
Proteínas de Plantas/metabolismo , Tumores de Planta , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia
4.
Mol Plant Pathol ; 15(8): 780-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25346968

RESUMO

With the exception of Ustilago maydis, smut fungi infecting monocotyledonous hosts systemically colonize infected plants and cause symptoms exclusively in the inflorescences. Ustilago may disinfects primordia of all aerial organs of maize (Zea mays L.) and results in the formation of large plant tumours. Previously, we have found that U. maydis infection of seedling leaves, adult leaves and tassels causes organ-specific transcriptional changes in both the pathogen and the host. Of particular interest, U. may disgenes encoding secreted proteins are differentially expressed depending on the colonized maize organ. Therefore, we hypothesized that the fungus secretes virulence-related proteins (effectors)that act in an organ-specific manner. Here, we present the identification and functional characterization of 20 presumptive organ-specific U. maydis effector genes. Ustilago maydis deletion strains for these genes were generated and tested for infectivity of maize seedling leaves and tassels. This approach identified 11 effector genes required for the full virulence of U. maydis. In nine cases, virulence was only affected in one of the tested plant organs. These results demonstrate that individual fungal effector proteins contribute to fungal virulence in an organ-specific manner.


Assuntos
Genes Fúngicos/genética , Especificidade de Órgãos , Doenças das Plantas/microbiologia , Ustilago/genética , Ustilago/patogenicidade , Zea mays/microbiologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Estudos de Associação Genética , Modelos Biológicos , Mutação/genética , Folhas de Planta/microbiologia , Tumores de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA