Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(16): 14210-14233, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39132828

RESUMO

Casitas B-lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that has an important role in effector T cell function, acting as a negative regulator of T cell, natural killer (NK) cell, and B cell activation. A discovery effort toward Cbl-b inhibitors was pursued in which a generative AI design engine, REINVENT, was combined with a medicinal chemistry structure-based design to discover novel inhibitors of Cbl-b. Key to the success of this effort was the evolution of the "Design" phase of the Design-Make-Test-Analyze cycle to involve iterative rounds of an in silico structure-based drug design, strongly guided by physics-based affinity prediction and machine learning DMPK predictive models, prior to selection for synthesis. This led to the accelerated discovery of a potent series of carbamate Cbl-b inhibitors.


Assuntos
Carbamatos , Desenho de Fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl , Proteínas Proto-Oncogênicas c-cbl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Carbamatos/química , Carbamatos/farmacologia , Carbamatos/síntese química , Humanos , Relação Estrutura-Atividade , Modelos Moleculares , Inteligência Artificial , Descoberta de Drogas , Proteínas Adaptadoras de Transdução de Sinal
2.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466661

RESUMO

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Assuntos
Neoplasias , Humanos , Entropia , Metionina Adenosiltransferase/metabolismo
3.
J Med Chem ; 67(2): 1500-1512, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227216

RESUMO

Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.


Assuntos
Proteínas Proto-Oncogênicas c-cbl , Ubiquitina-Proteína Ligases , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linfócitos T/metabolismo , Fosforilação , Ubiquitina/metabolismo
4.
ACS Med Chem Lett ; 14(12): 1848-1856, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116444

RESUMO

Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors. This series displayed nanomolar levels of biochemical potency, as well as potent T-cell activation. The functional activity of this class of Cbl-b inhibitors was further corroborated with ubiquitin-based cellular assays.

5.
Chem Sci ; 14(25): 7057-7067, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389247

RESUMO

Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.

7.
ACS Med Chem Lett ; 13(8): 1295-1301, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978693

RESUMO

The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10-15 µM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pK a, to identify compound 18, which combines low hERG activity (IC50 = 75 µM) with excellent kinome selectivity and favorable pharmacokinetic properties.

8.
J Med Chem ; 65(4): 3306-3331, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35133824

RESUMO

ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaio Tumoral de Célula-Tronco
9.
J Med Chem ; 64(19): 14498-14512, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570508

RESUMO

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure- and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1-DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.


Assuntos
DNA , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Humanos , Cristalografia por Raios X , DNA/química , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Especificidade por Substrato
10.
J Med Chem ; 64(18): 13524-13539, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34478292

RESUMO

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-a]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective in vivo probe compound 32. We demonstrated dose-dependent in vivo efficacy and target engagement in Mer- and Axl-dependent efficacy models using two structurally differentiated and selective dual Mer/Axl inhibitors. Additionally, in vivo efficacy was observed in a preclinical MC38 immuno-oncology model in combination with anti-PD1 antibodies and ionizing radiation.


Assuntos
Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Imidazóis/síntese química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/síntese química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
11.
Curr Res Struct Biol ; 3: 19-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235483

RESUMO

Helicobacter pylori (H. pylori) uses several outer membrane proteins for adhering to its host's gastric mucosa, an important step in establishing and preserving colonization. Several adhesins (SabA, BabA, HopQ) have been characterized in terms of their three-dimensional structure. A recent addition to the growing list of outer membrane porins is LabA (LacdiNAc-binding adhesin), which is thought to bind specifically to GalNAcß1-4GlcNAc, occurring in the gastric mucosa. LabA47-496 protein expressed as His-tagged protein in the periplasm of E. coli and purified via subtractive IMAC after TEV cleavage and subsequent size exclusion chromatography, resulted in bipyramidal crystals with good diffraction properties. Here, we describe the 2.06 â€‹Å resolution structure of the exodomain of LabA from H. pylori strain J99 (PDB ID: 6GMM). Strikingly, despite the relatively low levels of sequence identity with the other three structurally characterized adhesins (20-49%), LabA shares an L-shaped fold with SabA and BabA. The 'head' region contains a 4 â€‹+ â€‹3 α-helix bundle, with a small insertion domain consisting of a short antiparallel beta sheet and an unstructured region, not resolved in the crystal structure. Sequence alignment of LabA from different strains shows a high level of conservation in the N- and C-termini, and identifies two main types based on the length of the insertion domain ('crown' region), the 'J99-type' (insertion ~31 â€‹amino acids), and the H. pylori '26695 type' (insertion ~46 â€‹amino acids). Analysis of ligand binding using Native Electrospray Ionization Mass Spectrometry (ESI-MS) together with solid phase-bound, ELISA-type assays could not confirm the originally described binding of GalNAcß1-4GlcNAc-containing oligosaccharides, in line with other recent reports, which also failed to confirm LacdiNAc binding.

12.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066057

RESUMO

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


Assuntos
Proteínas de Ciclo Celular/química , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos/efeitos dos fármacos
13.
J Med Chem ; 64(10): 6814-6826, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33900758

RESUMO

MAT2a is a methionine adenosyltransferase that synthesizes the essential metabolite S-adenosylmethionine (SAM) from methionine and ATP. Tumors bearing the co-deletion of p16 and MTAP genes have been shown to be sensitive to MAT2a inhibition, making it an attractive target for treatment of MTAP-deleted cancers. A fragment-based lead generation campaign identified weak but efficient hits binding in a known allosteric site. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a merging and growing strategy into an arylquinazolinone series of potent MAT2a inhibitors. The selected in vivo tool compound 28 reduced SAM-dependent methylation events in cells and inhibited proliferation of MTAP-null cells in vitro. In vivo studies showed that 28 was able to induce antitumor response in an MTAP knockout HCT116 xenograft model.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Metionina Adenosiltransferase/antagonistas & inibidores , Sítio Alostérico , Animais , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Técnicas de Inativação de Genes , Células HCT116 , Meia-Vida , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade , Transplante Heterólogo
14.
J Med Chem ; 64(6): 3165-3184, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33683117

RESUMO

Mer is a member of the TAM (Tyro3, Axl, Mer) kinase family that has been associated with cancer progression, metastasis, and drug resistance. Their essential function in immune homeostasis has prompted an interest in their role as modulators of antitumor immune response in the tumor microenvironment. Here we illustrate the outcomes of an extensive lead-generation campaign for identification of Mer inhibitors, focusing on the results from concurrent, orthogonal high-throughput screening approaches. Data mining, HT (high-throughput), and DECL (DNA-encoded chemical library) screens offered means to evaluate large numbers of compounds. We discuss campaign strategy and screening outcomes, and exemplify series resulting from prioritization of hits that were identified. Concurrent execution of HT and DECL screening successfully yielded a large number of potent, selective, and novel starting points, covering a range of selectivity profiles across the TAM family members and modes of kinase binding, and offered excellent start points for lead development.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Cristalografia por Raios X , Mineração de Dados , Descoberta de Drogas , Humanos , Modelos Moleculares , c-Mer Tirosina Quinase/química , c-Mer Tirosina Quinase/metabolismo
15.
Nucleic Acids Res ; 49(4): 2266-2288, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33511412

RESUMO

PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1's F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals for assembly of DNA repair components. A key component in transmission of the allosteric signal is the HD subdomain of CAT, which alone bridges between the assembled DNA-binding domains and the active site in the ART subdomain of CAT. Here we present a study of isolated CAT domain from human PARP-1, using NMR-based dynamics experiments to analyse WT apo-protein as well as a set of inhibitor complexes (with veliparib, olaparib, talazoparib and EB-47) and point mutants (L713F, L765A and L765F), together with new crystal structures of the free CAT domain and inhibitor complexes. Variations in both dynamics and structures amongst these species point to a model for full-length PARP-1 activation where first DNA binding and then substrate interaction successively destabilise the folded structure of the HD subdomain to the point where its steric blockade of the active site is released and PAR synthesis can proceed.


Assuntos
Poli(ADP-Ribose) Polimerase-1/química , Regulação Alostérica , Amidas/química , Domínio Catalítico , Cristalografia por Raios X , Dano ao DNA , Ativação Enzimática , Modelos Moleculares , Mutação , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/química , Domínios Proteicos
16.
Biochem J ; 477(22): 4443-4452, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33119085

RESUMO

The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated. Due to its flexible nature, the A-loop is usually disordered and untraceable in kinase domain crystal structures. The resulting lack of structural information is regrettable as it impedes the design of drug A-loop contacts, which have proven favourable in multiple cases. Here, we characterize the binding with A-loop engagement between type 1.5 kinase inhibitor 'example 172' (EX172) and Mer tyrosine kinase (MerTK). With the help of crystal structures and binding kinetics, we portray how the recruitment of the A-loop elicits a two-step binding mechanism which results in a drug-target complex characterized by high affinity and long residence time. In addition, the type 1.5 compound possesses excellent kinome selectivity and a remarkable preference for the phosphorylated over the dephosphorylated form of MerTK. We discuss these unique characteristics in the context of known type 1 and type 2 inhibitors and highlight opportunities for future kinase inhibitor design.


Assuntos
Trifosfato de Adenosina/química , Inibidores de Proteínas Quinases/química , c-Mer Tirosina Quinase/antagonistas & inibidores , c-Mer Tirosina Quinase/química , Humanos , Estrutura Secundária de Proteína
17.
J Am Chem Soc ; 142(23): 10358-10372, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412754

RESUMO

With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.


Assuntos
Benzoxazinas/farmacologia , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Benzoxazinas/síntese química , Benzoxazinas/química , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química
19.
J Med Chem ; 63(7): 3461-3471, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-31851518

RESUMO

DNA-PK is a key component within the DNA damage response, as it is responsible for recognizing and repairing double-strand DNA breaks (DSBs) via non-homologous end joining. Historically it has been challenging to identify inhibitors of the DNA-PK catalytic subunit (DNA-PKcs) with good selectivity versus the structurally related PI3 (lipid) and PI3K-related protein kinases. We screened our corporate collection for DNA-PKcs inhibitors with good PI3 kinase selectivity, identifying compound 1. Optimization focused on further improving selectivity while improving physical and pharmacokinetic properties, notably co-optimization of permeability and metabolic stability, to identify compound 16 (AZD7648). Compound 16 had no significant off-target activity in the protein kinome and only weak activity versus PI3Kα/γ lipid kinases. Monotherapy activity in murine xenograft models was observed, and regressions were observed when combined with inducers of DSBs (doxorubicin or irradiation) or PARP inhibition (olaparib). These data support progression into clinical studies (NCT03907969).


Assuntos
Proteína Quinase Ativada por DNA/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Piranos/uso terapêutico , Triazóis/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Cães , Descoberta de Drogas , Humanos , Camundongos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Purinas/síntese química , Purinas/farmacocinética , Piranos/síntese química , Piranos/farmacocinética , Ratos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mod Pathol ; 33(4): 518-530, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31558782

RESUMO

Programmed cell death ligand-1 (PD-L1) expression levels in patient tumor samples have proven clinical utility across various cancer types. Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available. Published studies using the VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1 IHC 22C3 pharmDx assay, Dako PD-L1 IHC 28-8 pharmDx assay, and laboratory-developed tests utilizing the E1L3N antibody (Cell Signaling Technology), have demonstrated differing levels of PD-L1 staining between assays, resulting in conjecture as to whether antibody-binding epitopes could be responsible for discordance between assays. Therefore, to understand the performance of different PD-L1 predictive immunohistochemistry assays, we aimed to distinguish the epitopes within the PD-L1 protein responsible for antibody binding. The sites at which antibody clones SP263, SP142, 22C3, 28-8, and E1L3N bind to recombinant PD-L1 were assessed using several methods, including conformational peptide array, surface plasmon resonance, and/or hydrogen/deuterium exchange mass spectrometry. Putative binding sites were confirmed by site-directed mutagenesis of PD-L1, followed by western blotting and immunohistochemical analysis of cell lines expressing mutant constructs. Our results demonstrate that clones SP263 and SP142 bind to an identical epitope in the cytoplasmic domain at the extreme C-terminus of PD-L1, distinct from 22C3 and 28-8. Using mutated PD-L1 constructs, an additional clone, E1L3N, was also found to bind to the cytoplasmic domain of PD-L1. The E1L3N binding epitope overlaps considerably with the SP263/SP142 binding site but is not identical. Clones 22C3 and 28-8 have binding profiles in the extracellular domain of PD-L1, which differ from one another. Despite identifying epitope binding variance among antibodies, evidence indicates that only the SP142 assay generates significantly discordant immunohistochemical staining, which can be resolved by altering the assay protocol. Therefore, inter-assay discordances are more likely attributable to tumor heterogeneity, assay, or platform variables rather than antibody epitope.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Antígeno B7-H1/imunologia , Sítios de Ligação de Anticorpos , Mapeamento de Epitopos , Imuno-Histoquímica , Neoplasias/imunologia , Anticorpos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Glicosilação , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Valor Preditivo dos Testes , Ligação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA