Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 299(1): F91-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375116

RESUMO

Increased expression of the facilitative glucose transporter, GLUT1, leads to glomerulopathy that resembles diabetic nephropathy, whereas prevention of enhanced GLUT1 expression retards nephropathy. While many of the GLUT1-mediated effects are likely due to mesangial cell effects, we hypothesized that increased GLUT1 expression in podocytes also contributes to the progression of diabetic nephropathy. Therefore, we generated two podocyte-specific GLUT1 transgenic mouse lines (driven by a podocin promoter) on a db/m C57BLKS background. Progeny of the two founders were used to generate diabetic db/db and control db/m littermate mice. Immunoblots of glomerular lysates showed that transgenic mice had a 3.5-fold (line 1) and 2.1-fold (line 2) increase in GLUT1 content compared with wild-type mice. Both lines showed similar increases in fasting blood glucose and body weights at 24 wk of age compared with wild-type mice. Mesangial index (percent PAS-positive material in the mesangial tuft) increased 88% (line 1) and 75% (line 2) in the wild-type diabetic mice but only 48% (line 1) and 39% (line 2) in the diabetic transgenic mice (P < 0.05, transgenic vs. wild-type mice). This reduction in mesangial expansion was accompanied by a reduction in fibronectin accumulation, and vascular endothelial growth factor (VEGF) levels increased only half as much in the transgenic diabetic mice as in wild-type diabetic mice. Levels of nephrin, neph1, CD2AP, podocin, and GLUT4 were not significantly different in transgenic compared with wild-type mice. Taken together, increased podocyte GLUT1 expression in diabetic mice does not contribute to early diabetic nephropathy; surprisingly, it protects against mesangial expansion and fibronectin accumulation possibly by blunting podocyte VEGF increases.


Assuntos
Nefropatias Diabéticas/metabolismo , Mesângio Glomerular/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Glicemia/metabolismo , Peso Corporal , Proteínas do Citoesqueleto/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Jejum/sangue , Fibronectinas/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ratos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Diabetes ; 58(2): 469-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19017763

RESUMO

OBJECTIVE: Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure. RESEARCH DESIGN AND METHODS: Kidney biopsies were obtained from 74 patients (control subjects, early and progressive type 2 diabetic nephropathy). Glomerular and tubulointerstitial mRNAs were microarrayed, followed by bioinformatics analyses. Gene expression changes were confirmed by real-time RT-PCR and immunohistological staining. Samples from db/db C57BLKS and streptozotocin-induced DBA/2J mice, commonly studied murine models of diabetic nephropathy, were analyzed. RESULTS: In human glomeruli and tubulointerstitial samples, the Janus kinase (Jak)-signal transducer and activator of transcription (Stat) pathway was highly and significantly regulated. Jak-1, -2, and -3 as well as Stat-1 and -3 were expressed at higher levels in patients with diabetic nephropathy than in control subjects. The estimated glomerular filtration rate significantly correlated with tubulointerstitial Jak-1, -2, and -3 and Stat-1 expression (R(2) = 0.30-0.44). Immunohistochemistry found strong Jak-2 staining in glomerular and tubulointerstitial compartments in diabetic nephropathy compared with control subjects. In contrast, there was little or no increase in expression of Jak/Stat genes in the db/db C57BLKS or diabetic DBA/2J mice. CONCLUSIONS: These data suggest a direct relationship between tubulointerstitial Jak/Stat expression and progression of kidney failure in patients with type 2 diabetic nephropathy and distinguish progressive human diabetic nephropathy from nonprogressive murine diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Expressão Gênica , Adulto , Animais , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Am J Physiol Renal Physiol ; 295(4): F1071-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667486

RESUMO

Recent studies suggest that thiazolidinediones ameliorate diabetic nephropathy (DN) independently of their effect on hyperglycemia. In the current study, we confirm and extend these findings by showing that rosiglitazone treatment prevented the development of DN and reversed multiple markers of oxidative injury in DBA/2J mice made diabetic by low-dose streptozotocin. These diabetic mice developed a 14.2-fold increase in albuminuria and a 53% expansion of renal glomerular extracellular matrix after 12 wk of diabetes. These changes were largely abrogated by administration of rosiglitazone beginning 2 wk after the completion of streptozotocin injections. Rosiglitazone had no effect on glycemic control. Rosiglitazone had similar effects on insulin-treated diabetic mice after 24 wk of diabetes. Podocyte loss and glomerular fibronectin accumulation, other markers of early DN, were prevented by rosiglitazone in both 12- and 24-wk diabetic models. Surprisingly, glomerular GLUT1 levels did not increase and nephrin levels did not decrease in the diabetic animals; neither changed with rosiglitazone. Plasma and kidney markers of protein oxidation and lipid peroxidation were significantly elevated in the 24-wk diabetic animals despite insulin treatment and were reduced to near-normal levels by rosiglitazone. Finally, urinary metabolites were markedly altered by diabetes. Of 1,988 metabolite features identified by electrospray ionization time of flight mass spectrometry, levels of 56 were altered more than twofold in the urine of diabetic mice. Of these, 21 were returned to normal by rosiglitazone. Thus rosiglitazone has direct effects on the renal glomerulus to reduce reactive oxygen species accumulation to prevent type 1 diabetic mice from development of DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Hipoglicemiantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Albuminúria/tratamento farmacológico , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Biomarcadores/sangue , Biomarcadores/urina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos DBA , Estresse Oxidativo/fisiologia , Podócitos/patologia , Rosiglitazona , Espectrometria de Massas por Ionização por Electrospray , Urina
4.
BMC Nephrol ; 9: 7, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18647412

RESUMO

BACKGROUND: Selenoproteins contain selenocysteine (Sec), commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes. METHODS: C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/-) and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed. RESULTS: After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(P)H dehydrogenase, quinone 1. CONCLUSION: Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(P)H dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas/fisiopatologia , Selenoproteínas/deficiência , Animais , Peso Corporal , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/metabolismo , Deleção de Genes , Inativação Gênica , Predisposição Genética para Doença , Hiperglicemia/etiologia , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Podócitos/metabolismo , RNA de Transferência , Selenoproteínas/genética , Fatores de Tempo
5.
Arterioscler Thromb Vasc Biol ; 25(8): 1596-602, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15890973

RESUMO

OBJECTIVE: We hypothesized that GLUT4 is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs), and GLUT4 is necessary for agonist-induced VSMC contraction. METHODS AND RESULTS: Glucose deprivation and indinavir, a GLUT4 antagonist, were used to assess the role of GLUT4 and non-GLUT4 transporters in vascular reactivity. In isolated endothelium-denuded mouse aorta, approximately 50% of basal glucose uptake was GLUT4-dependent. Norepinephrine-mediated contractions were dependent on both GLUT4 and non-GLUT4 transporters, serotonin (5-HT)-mediated contractions were mainly GLUT4-dependent, and prostaglandin (PG) F(2alpha)-mediated contractions were dependent on non-GLUT4 transporters, whereas indinavir had no effect in GLUT4 knockout vessels. We also observed a 46% decrease in GLUT4 expression in aortas from angiotensin II hypertensive mice. Indinavir caused a less profound attenuation of maximal 5-HT-mediated contraction in these vessels, corresponding to the lower GLUT4 levels in the hypertensive aortas. Finally, and somewhat surprisingly, chronic GLUT4 knockout was associated with increased vascular reactivity compared with that in wild-type animals, suggesting that chronic absence or reduction of GLUT4 expression in VSMCs leads to opposite effects observed with acute inhibition of GLUT4. CONCLUSIONS: Thus, we conclude that GLUT4 is constitutively expressed in large arteries and likely participates in basal glucose uptake. In addition, GLUT4, as well as other non-GLUT4 facilitative glucose transporters, are necessary for agonist-induced contraction, but each transporter participates in VSMC contraction selectively, depending on the agonist, and changes in GLUT4 expression may account for some of the functional changes associated with vascular diseases like hypertension.


Assuntos
Aorta/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Dinoprosta/farmacologia , Células Endoteliais/citologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/genética , Inibidores da Protease de HIV/farmacologia , Hipertensão/induzido quimicamente , Indinavir/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Norepinefrina/farmacologia , Serotonina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA