Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214254

RESUMO

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Assuntos
Antimaláricos , Malária , Receptor EphA2 , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Relação Estrutura-Atividade , África , Plasmodium falciparum
2.
mBio ; 15(1): e0183223, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38059639

RESUMO

IMPORTANCE: Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Piperazinas , Quinolinas , Animais , Plasmodium falciparum , Quinolinas/farmacologia , Quinolinas/química , Cloroquina/farmacologia , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Malária Falciparum/parasitologia
3.
Nat Commun ; 14(1): 3059, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244916

RESUMO

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/uso terapêutico , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/metabolismo
4.
Nat Commun ; 14(1): 1455, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927839

RESUMO

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Mutação , Ligases/metabolismo
5.
J Med Chem ; 66(5): 3540-3565, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36812492

RESUMO

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Homeostase , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
6.
Front Cell Dev Biol ; 10: 806545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557949

RESUMO

The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians.

7.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279219

RESUMO

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África , Antimaláricos/farmacologia , Ásia , Camboja , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Epidemiologia Molecular
8.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876936

RESUMO

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirróis/farmacologia , Animais , Antimaláricos/química , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Pirróis/química , Relação Estrutura-Atividade
9.
Front Cell Dev Biol ; 9: 632303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732701

RESUMO

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood. Hoxa5 patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show that Hoxa5 also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5. Hoxa5 null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded in Hoxa5 mutants. Conditional deletion of Hoxa5 with Myf5/Cre can reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary within Myf5-positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows that Hoxa5 does not act cell-autonomously to repress skeletal muscle fate. Interestingly, Hoxa5-dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role for Hoxa5 in multiple tissues. Together, these findings establish a role for Hoxa5 in embryonic BAT development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA