Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426131

RESUMO

Step-selection models are widely used to study animals' fine-scale habitat selection based on movement data. Resource preferences and movement patterns, however, often depend on the animal's unobserved behavioral states, such as resting or foraging. As this is ignored in standard (integrated) step-selection analyses (SSA, iSSA), different approaches have emerged to account for such states in the analysis. The performance of these approaches and the consequences of ignoring the states in step-selection analysis, however, have rarely been quantified. We evaluate the recent idea of combining iSSAs with hidden Markov models (HMMs), which allows for a joint estimation of the unobserved behavioral states and the associated state-dependent habitat selection. Besides theoretical considerations, we use an extensive simulation study and a case study on fine-scale interactions of simultaneously tracked bank voles (Myodes glareolus) to compare this HMM-iSSA empirically to both the standard and a widely used classification-based iSSA (i.e., a two-step approach based on a separate prior state classification). Moreover, to facilitate its use, we implemented the basic HMM-iSSA approach in the R package HMMiSSA available on GitHub.


Assuntos
Ecossistema , Movimento , Animais , Cadeias de Markov , Simulação por Computador
2.
Glob Chang Biol ; 29(13): 3747-3758, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186484

RESUMO

Anthropogenic global warming has major implications for mobile terrestrial insects, including long-term effects from constant warming, for example, on species distribution patterns, and short-term effects from heat extremes that induce immediate physiological responses. To cope with heat extremes, they either have to reduce their activity or move to preferable microhabitats. The availability of favorable microhabitat conditions is strongly promoted by the spatial heterogeneity of habitats, which is often reduced by anthropogenic land transformation. Thus, it is decisive to understand the combined effects of these global change drivers on insect activity. Here, we assessed the movement activity of six insect species (from three orders) in response to heat stress using a unique tracking approach via radio frequency identification. We tracked 465 individuals at the iDiv Ecotron across a temperature gradient up to 38.7°C. In addition, we varied microhabitat conditions by adding leaf litter from four different tree species to the experimental units, either spatially separated or well mixed. Our results show opposing effects of heat extremes on insect activity depending on the microhabitat conditions. The insect community significantly decreased its activity in the mixed litter scenario, while we found a strong positive effect on activity in the separated litter scenario. We hypothesize that the simultaneous availability of thermal refugia as well as resources provided by the mixed litter scenario allows animals to reduce their activity and save energy in response to heat stress. Contrary, the spatial separation of beneficial microclimatic conditions and resources forces animals to increase their activity to fulfill their energetic needs. Thus, our study highlights the importance of habitat heterogeneity on smaller scales, because it may buffer the consequences of extreme temperatures of insect performance and survival under global change.


Assuntos
Temperatura Alta , Insetos , Animais , Temperatura , Ecossistema , Resposta ao Choque Térmico
3.
Biology (Basel) ; 11(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009844

RESUMO

Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.

4.
Proc Natl Acad Sci U S A ; 119(33): e2203663119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939677

RESUMO

Animals that depend on ephemeral, patchily distributed prey often use public information to locate resource patches. The use of public information can lead to the aggregation of foragers at prey patches, a mechanism known as local enhancement. However, when ephemeral resources are distributed over large areas, foragers may also need to increase search efficiency, and thus apply social strategies when sampling the landscape. While sensory networks of visually oriented animals have already been confirmed, we lack an understanding of how acoustic eavesdropping adds to the formation of sensory networks. Here we radio-tracked a total of 81 aerial-hawking bats at very high spatiotemporal resolution during five sessions over 3 y, recording up to 19 individuals simultaneously. Analyses of interactive flight behavior provide conclusive evidence that bats form temporary mobile sensory networks by adjusting their movements to neighboring conspecifics while probing the airspace for prey. Complementary agent-based simulations confirmed that the observed movement patterns can lead to the formation of mobile sensory networks, and that bats located prey faster when networking than when relying only on local enhancement or searching solitarily. However, the benefit of networking diminished with decreasing group size. The combination of empirical analyses and simulations elucidates how animal groups use acoustic information to efficiently locate unpredictable and ephemeral food patches. Our results highlight that declining local populations of social foragers may thus suffer from Allee effects that increase the risk of collapses under global change scenarios, like insect decline and habitat degradation.


Assuntos
Quirópteros , Eulipotyphla , Comportamento Predatório , Animais , Quirópteros/fisiologia , Ecolocação , Ecossistema , Eulipotyphla/fisiologia , Voo Animal , Comportamento Predatório/fisiologia
5.
Science ; 375(6582): eabg1780, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175823

RESUMO

Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.


Assuntos
Animais Selvagens/fisiologia , Comportamento Animal , Big Data , Ecologia , Meio Ambiente , Movimento , Migração Animal , Animais , Coleta de Dados , Ecossistema , Análise Espaço-Temporal
6.
Ecology ; 102(5): e03333, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710633

RESUMO

Nutrient enrichment is widespread throughout grassland systems and expected to increase during the Anthropocene. Trophic interactions, like aboveground herbivory, have been shown to mitigate its effect on plant diversity. Belowground herbivory may also impact these habitats' response to nutrient enrichment, but its influence is much less understood, and likely to depend on factors such as the herbivores' preference for dominant species and the symmetry of belowground competition. If preferential toward the dominant, fastest growing species, root herbivores may reduce these species' relative fitness and support diversity during nutrient enrichment. However, as plant competition belowground is commonly considered to be symmetric, root herbivores may be less impactful than shoot herbivores because they do not reduce any competitive asymmetry between the dominant and subordinate plants. To better understand this system, we used an established, two-layer, grassland community model to run a full-factorially designed simulation experiment, crossing the complete removal of aboveground herbivores and belowground herbivores with nutrient enrichment. After 100 yr of simulation, we analyzed communities' diversity, competition on the individual level, as well as their resistance and recovery. The model reproduced both observed general effects of nutrient enrichment in grasslands and the short-term trends of specific experiments. We found that belowground herbivores exacerbate the negative influence of nutrient enrichment on Shannon diversity within our model grasslands, while aboveground herbivores mitigate its effect. Indeed, data on individuals' above- and belowground resource uptake reveals that root herbivory reduces resource limitation belowground. As with nutrient enrichment, this shifts competition aboveground. Since shoot competition is asymmetric, with larger, taller individuals gathering disproportionate resources compared to their smaller, shorter counterparts, this shift promotes the exclusion of the smallest species. While increasing the root herbivores' preferences toward dominant species lessens their negative impact, at best they are only mildly advantageous, and they do very little reduce the negative consequences of nutrient enrichment. Because our model's belowground competition is symmetric, we hypothesize that root herbivores may be beneficial when root competition is asymmetric. Future research into belowground herbivory should account for the nature of competition belowground to better understand the herbivores' true influence.


Assuntos
Pradaria , Herbivoria , Biomassa , Ecossistema , Humanos , Nutrientes , Plantas
7.
Biol Rev Camb Philos Soc ; 95(4): 1073-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627362

RESUMO

Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change.


Assuntos
Migração Animal/fisiologia , Biodiversidade , Fenômenos Ecológicos e Ambientais , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Modelos Biológicos , Estações do Ano
8.
Ecol Evol ; 7(20): 8388-8405, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075457

RESUMO

Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive-based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random-walk models to GPS movement data of six wolves (Canis lupus; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti-predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time-dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time-dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition-based movement in relation to dynamic environments and resources.

9.
J Math Biol ; 73(6-7): 1691-1726, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27098937

RESUMO

Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.


Assuntos
Comportamento Animal/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Animais , Método de Monte Carlo , Fatores de Tempo
10.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26880836

RESUMO

Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Salmão , Animais , Ectoparasitoses/parasitologia , Modelos Biológicos
11.
J Math Biol ; 73(4): 815-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26852021

RESUMO

When sampling animal movement paths, the frequency at which location measurements are attempted is a critical feature for data analysis. Important quantities derived from raw data, e.g. travel distance or sinuosity, can differ largely based on the temporal resolution of the data. Likewise, when movement models are fitted to data, parameter estimates have been demonstrated to vary with sampling rate. Thus, biological statements derived from such analyses can only be made with respect to the resolution of the underlying data, limiting extrapolation of results and comparison between studies. To address this problem, we investigate whether there are models that are robust against changes in temporal resolution. First, we propose a mathematically rigorous framework, in which we formally define robustness as a model property. We then use the framework for a thorough assessment of a range of basic random walk models, in which we also show how robustness relates to other probabilistic concepts. While we found robustness to be a strong condition met by few models only, we suggest a new method to extend models so as to make them robust. Our framework provides a new systematic, mathematically founded approach to the question if, and how, sampling rate of movement paths affects statistical inference.


Assuntos
Modelos Biológicos , Atividade Motora/fisiologia , Animais , Reprodutibilidade dos Testes
12.
Ecol Evol ; 3(12): 4149-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24324866

RESUMO

Analyses of animal movement data have primarily focused on understanding patterns of space use and the behavioural processes driving them. Here, we analyzed animal movement data to infer components of individual fitness, specifically parturition and neonate survival. We predicted that parturition and neonate loss events could be identified by sudden and marked changes in female movement patterns. Using GPS radio-telemetry data from female woodland caribou (Rangifer tarandus caribou), we developed and tested two novel movement-based methods for inferring parturition and neonate survival. The first method estimated movement thresholds indicative of parturition and neonate loss from population-level data then applied these thresholds in a moving-window analysis on individual time-series data. The second method used an individual-based approach that discriminated among three a priori models representing the movement patterns of non-parturient females, females with surviving offspring, and females losing offspring. The models assumed that step lengths (the distance between successive GPS locations) were exponentially distributed and that abrupt changes in the scale parameter of the exponential distribution were indicative of parturition and offspring loss. Both methods predicted parturition with near certainty (>97% accuracy) and produced appropriate predictions of parturition dates. Prediction of neonate survival was affected by data quality for both methods; however, when using high quality data (i.e., with few missing GPS locations), the individual-based method performed better, predicting neonate survival status with an accuracy rate of 87%. Understanding ungulate population dynamics often requires estimates of parturition and neonate survival rates. With GPS radio-collars increasingly being used in research and management of ungulates, our movement-based methods represent a viable approach for estimating rates of both parameters.

13.
Ecol Lett ; 16(10): 1316-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23953128

RESUMO

Memory is critical to understanding animal movement but has proven challenging to study. Advances in animal tracking technology, theoretical movement models and cognitive sciences have facilitated research in each of these fields, but also created a need for synthetic examination of the linkages between memory and animal movement. Here, we draw together research from several disciplines to understand the relationship between animal memory and movement processes. First, we frame the problem in terms of the characteristics, costs and benefits of memory as outlined in psychology and neuroscience. Next, we provide an overview of the theories and conceptual frameworks that have emerged from behavioural ecology and animal cognition. Third, we turn to movement ecology and summarise recent, rapid developments in the types and quantities of available movement data, and in the statistical measures applicable to such data. Fourth, we discuss the advantages and interrelationships of diverse modelling approaches that have been used to explore the memory-movement interface. Finally, we outline key research challenges for the memory and movement communities, focusing on data needs and mathematical and computational challenges. We conclude with a roadmap for future work in this area, outlining axes along which focused research should yield rapid progress.


Assuntos
Migração Animal , Memória , Modelos Biológicos , Animais , Comportamento Animal , Evolução Biológica , Pesquisa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA