Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740411

RESUMO

Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans-encoded sRNA (trans-sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving the riboregulator GspR, CtrA, and a cold shock chaperone may contribute to fine-tuning of ctrA expression.

2.
Front Genet ; 8: 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620411

RESUMO

In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10-2 pixels, and superior results compared to a state of the art algorithm.

3.
PLoS One ; 12(4): e0175832, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394919

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0048494.].

4.
J Biotechnol ; 198: 3-14, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25661839

RESUMO

Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.


Assuntos
Regiões Promotoras Genéticas/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Galactanos/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Reporter/genética , Glucanos/genética , Proteínas de Fluorescência Verde/genética , Polissacarídeos Bacterianos/genética , Percepção de Quorum/genética
5.
RNA Biol ; 11(5): 550-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003187

RESUMO

The symbiotic α-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated α-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated α-proteobacteria concludes this review.


Assuntos
Alphaproteobacteria/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Alphaproteobacteria/metabolismo , Pareamento de Bases , Família Multigênica , Plantas/microbiologia , Estabilidade de RNA , RNA Antissenso/química , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
6.
RNA Biol ; 11(5): 563-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24786641

RESUMO

The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Estresse Fisiológico , Pareamento de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes
7.
BMC Genomics ; 14: 156, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23497287

RESUMO

BACKGROUND: Sinorhizobium meliloti is a soil-dwelling α-proteobacterium that possesses a large, tripartite genome and engages in a nitrogen fixing symbiosis with its plant hosts. Although much is known about this important model organism, global characterization of genetic regulatory circuits has been hampered by a lack of information about transcription and promoters. RESULTS: Using an RNAseq approach and RNA populations representing 16 different growth and stress conditions, we comprehensively mapped S. meliloti transcription start sites (TSS). Our work identified 17,001 TSS that we grouped into six categories based on the genomic context of their transcripts: mRNA (4,430 TSS assigned to 2,657 protein-coding genes), leaderless mRNAs (171), putative mRNAs (425), internal sense transcripts (7,650), antisense RNA (3,720), and trans-encoded sRNAs (605). We used this TSS information to identify transcription factor binding sites and putative promoter sequences recognized by seven of the 15 known S. meliloti σ factors σ70, σ54, σH1, σH2, σE1, σE2, and σE9). Altogether, we predicted 2,770 new promoter sequences, including 1,302 located upstream of protein coding genes and 722 located upstream of antisense RNA or trans-encoded sRNA genes. To validate promoter predictions for targets of the general stress response σ factor, RpoE2 (σE2), we identified rpoE2-dependent genes using microarrays and confirmed TSS for a subset of these by 5' RACE mapping. CONCLUSIONS: By identifying TSS and promoters on a global scale, our work provides a firm foundation for the continued study of S. meliloti gene expression with relation to gene organization, σ factors and other transcription factors, and regulatory RNAs.


Assuntos
Genes Bacterianos , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Regiões Promotoras Genéticas , RNA/metabolismo , Análise de Sequência de RNA , Fator sigma/genética , Fator sigma/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
8.
PLoS One ; 7(10): e48494, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119037

RESUMO

Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15)N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , Proteoma , Proteômica , Sinorhizobium meliloti/metabolismo , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Homeostase , Fator Proteico 1 do Hospedeiro/genética , Ferro/metabolismo , Nitrocompostos/metabolismo , Estresse Oxidativo , Ligação Proteica , Regulon , Sideróforos/biossíntese , Sinorhizobium meliloti/genética , Uracila/metabolismo , Uridina/metabolismo
9.
Genes (Basel) ; 2(4): 925-56, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24710299

RESUMO

Post-transcriptional regulation by trans-encoded sRNAs, for example via base-pairing with target mRNAs, is a common feature in bacteria and influences various cell processes, e.g., response to stress factors. Several studies based on computational and RNA-seq approaches identified approximately 180 trans-encoded sRNAs in Sinorhizobium meliloti. The initial point of this report is a set of 52 trans-encoded sRNAs derived from the former studies. Sequence homology combined with structural conservation analyses were applied to elucidate the occurrence and distribution of conserved trans-encoded sRNAs in the order of Rhizobiales. This approach resulted in 39 RNA family models (RFMs) which showed various taxonomic distribution patterns. Whereas the majority of RFMs was restricted to Sinorhizobium species or the Rhizobiaceae, members of a few RFMs were more widely distributed in the Rhizobiales. Access to this data is provided via the RhizoGATE portal [1,2].

10.
BMC Genomics ; 11: 245, 2010 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-20398411

RESUMO

BACKGROUND: Small untranslated RNAs (sRNAs) are widespread regulators of gene expression in bacteria. This study reports on a comprehensive screen for sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti applying deep sequencing of cDNAs and microarray hybridizations. RESULTS: A total of 1,125 sRNA candidates that were classified as trans-encoded sRNAs (173), cis-encoded antisense sRNAs (117), mRNA leader transcripts (379), and sense sRNAs overlapping coding regions (456) were identified in a size range of 50 to 348 nucleotides. Among these were transcripts corresponding to 82 previously reported sRNA candidates. Enrichment for RNAs with primary 5'-ends prior to sequencing of cDNAs suggested transcriptional start sites corresponding to 466 predicted sRNA regions. The consensus sigma70 promoter motif CTTGAC-N17-CTATAT was found upstream of 101 sRNA candidates. Expression patterns derived from microarray hybridizations provided further information on conditions of expression of a number of sRNA candidates. Furthermore, GenBank, EMBL, DDBJ, PDB, and Rfam databases were searched for homologs of the sRNA candidates identified in this study. Searching Rfam family models with over 1,000 sRNA candidates, re-discovered only those sequences from S. meliloti already known and stored in Rfam, whereas BLAST searches suggested a number of homologs in related alpha-proteobacteria. CONCLUSIONS: The screening data suggests that in S. meliloti about 3% of the genes encode trans-encoded sRNAs and about 2% antisense transcripts. Thus, this first comprehensive screen for sRNAs applying deep sequencing in an alpha-proteobacterium shows that sRNAs also occur in high number in this group of bacteria.


Assuntos
Genoma Bacteriano , RNA Bacteriano/genética , RNA não Traduzido/genética , Sinorhizobium meliloti/genética , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Análise de Sequência com Séries de Oligonucleotídeos , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
BMC Genomics ; 9: 416, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18793445

RESUMO

BACKGROUND: Small non-coding RNAs (sRNAs) have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs) of the symbiotic alpha-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011. RESULTS: Our first sRNA candidate compilation was based mainly on the output of the sRNAPredictHT algorithm. A thorough manual sequence analysis of the curated list rendered an initial set of 18 IgRs of interest, from which 14 candidates were detected in strain 2011 by Northern blot and/or microarray analysis. Interestingly, the intracellular transcript levels varied in response to various stress conditions. We developed an alternative computational method to more sensitively predict sRNA-encoding genes and score these predicted genes based on several features to allow identification of the strongest candidates. With this novel strategy, we predicted 60 chromosomal independent transcriptional units that, according to our annotation, represent strong candidates for sRNA-encoding genes, including most of the sRNAs experimentally verified in this work and in two other contemporary studies. Additionally, we predicted numerous candidate sRNA genes encoded in megaplasmids pSymA and pSymB. A significant proportion of the chromosomal- and megaplasmid-borne putative sRNA genes were validated by microarray analysis in strain 2011. CONCLUSION: Our data extend the number of experimentally detected S. meliloti sRNAs and significantly expand the list of putative sRNA-encoding IgRs in this and closely related alpha-proteobacteria. In addition, we have developed a computational method that proved useful to predict sRNA-encoding genes in S. meliloti. We anticipate that this predictive approach can be flexibly implemented in many other bacterial species.


Assuntos
RNA Bacteriano/genética , RNA não Traduzido/genética , Sinorhizobium meliloti/genética , Cromossomos Bacterianos/genética , Biologia Computacional , DNA Intergênico/genética , Genoma Bacteriano , Genômica/métodos , Modelos Genéticos , RNA Bacteriano/análise , RNA Bacteriano/química , RNA não Traduzido/análise , RNA não Traduzido/química , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/crescimento & desenvolvimento
12.
BMC Mol Biol ; 8: 104, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18005413

RESUMO

BACKGROUND: The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. RESULTS: Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA) revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P) as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose-1,6-bisphosphate (F-1,6-P) and glucose-6-phosphate (G-6-P) also negatively affect SugR-binding, but in millimolar concentrations. CONCLUSION: In C. glutamicum ATCC 13032 the DeoR-type regulator SugR acts as a pleiotropic transcriptional repressor of all described PTS genes. Thus, in contrast to most DeoR-type repressors described, SugR is able to act also on the transcription of the distantly located genes ptsG and ptsS of C. glutamicum. Transcriptional repression of the fructose-PTS gene cluster is observed during growth on acetate and transcription is derepressed in the presence of the PTS sugars glucose and fructose. This derepression of the fructose-PTS gene cluster is mainly modulated by the negative effector F-1-P, but reduced sensitivity to the other effectors, F-1,6-P or G-6-P might cause differential transcriptional regulation of genes of the general part of the PTS (ptsI, ptsH) and associated genes encoding sugar-specific functions (ptsF, ptsG, ptsS).


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Genes Bacterianos/fisiologia , Família Multigênica/fisiologia , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/crescimento & desenvolvimento , Frutose/genética , Frutose/metabolismo , Glucose/genética , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA