Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosurgery ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087784

RESUMO

BACKGROUND AND OBJECTIVES: Preoperative embolization is used as an endovascular adjunct to surgical resection of meningiomas. However, there is no standardized system to assess the efficacy or extent of embolization during the embolization procedure. We sought to establish a purely angiographic grading system to facilitate consistent reporting of the outcome of meningioma embolization and to characterize the anatomic and other features of meningiomas that predict the degree of devascularization achieved through preoperative embolization. METHODS: We identified patients with meningiomas who underwent preoperative cerebral angiography and subsequent resection between 2015 and 2021. Demographic, clinical, and imaging data were collected in a research registry. We defined an angiographic devascularization grading scale as follows: grade 0 for no embolization, 1 for partial embolization, 2 for majority embolization, 3 for complete external carotid artery embolization, and 4 for complete embolization. RESULTS: Eighty consecutive patients were included, 60 of whom underwent preoperative tumor embolization (20 underwent angiography with an intention to treat but ultimately not embolization). Embolized tumors were larger (59.0 vs 35.9 cc; P = .03). Gross total resection, length of stay, and complication rates did not differ among groups. The distribution of arterial feeders differed significantly across tumors in a location-specific manner. Both the tumor location and the identity of arterial feeders were predictive of the extent of embolization. Anterior midline meningiomas were associated with internal carotid (ophthalmic, ethmoidal) supply and lower devascularization grades (P = .03). Tumors fed by meningeal feeders (convexity, falcine, lateral sphenoid wing) were associated with higher devascularization grades (P < .01). The procedural complication rate for tumor embolization was 2.5%. CONCLUSION: Angiographic outcomes can be graded to indicate the extent of tumor embolization. This system may facilitate consistency of reported angiographic results. In addition, arterial feeders vary in a manner predicted by tumor location, and these patterns correlate with typical degrees of devascularization achieved in those tumor locations.

2.
Interv Neuroradiol ; : 15910199241267312, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197867

RESUMO

BACKGROUND: Endovascular embolization is an adjunct to meningioma resection. Isolating the effectiveness of embolization is difficult as MR imaging is typically performed before embolization and after resection, and volumetric assessment of embolization on 2D angiographic imaging is challenging. We investigated the correlation between 2D angiographic and 3D MR measurements of meningioma devascularization following embolization. METHODS: We implemented a protocol for postembolization, preresection MRI. Angiographic devascularization was graded according to reduction of tumor blush from 1 (partial embolization) to 4 (complete embolization with no residual circulation supply). Volumetric extent of embolization was quantified as the percent of tumor contrast enhancement lost following embolization. Tumor embolization was analyzed according to tumor location and vascular supply. RESULTS: Thirty consecutive patients met inclusionary criteria. Grade 1 devascularization was achieved in 7% of patients, grade 2 in 43%, grade 3 in 20%, and grade 4 in 30%. Average extent of embolization was 37 ± 6%. Extent of tumor embolization was low (<25%) in 40%, moderate (25%-75%) in 40%, and high (>75%) in 20% of patients. Convexity, parasagittal/falcine and sphenoid wing tumors were found to have distinct vascular supply patterns and extent of embolization. Angiographic devascularization grade was significantly correlated with volumetric extent of tumor embolization (p < 0.001, r = 0.758). CONCLUSION: This is the first study to implement postembolization, preoperative MRI to assess extent of embolization prior to meningioma resection. The study demonstrates that volumetric assessment of contrast reduction following embolization provides a quantitative and spatially resolved framework for assessing extent of tumor embolization.

3.
J Neurosurg Case Lessons ; 3(25): CASE21135, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35733837

RESUMO

BACKGROUND: Arteriovenous malformations (AVMs) of the brain are vessel conglomerates of feeding arteries and draining veins that carry a risk of spontaneous and intraoperative rupture. Augmented reality (AR)-assisted neuronavigation permits continuous, real-time, updated visualization of navigation information through a heads-up display, thereby potentially improving the safety of surgical resection of AVMs. OBSERVATIONS: The authors report a case of a 37-year-old female presenting with a 2-year history of recurrent falls due to intermittent right-sided weakness and increasing clumsiness in the right upper extremity. Magnetic resonance imaging, magnetic resonance angiography, and cerebral angiography of the brain revealed a left parietal Spetzler-Martin grade III AVM. After endovascular embolization of the AVM, microsurgical resection using an AR-assisted neuronavigation system was performed. Postoperative angiography confirmed complete obliteration of arteriovenous shunting. The postsurgical course was unremarkable, and the patient remains in excellent health. LESSONS: Our case describes the operative setup and intraoperative employment of AR-assisted neuronavigation for AVM resection. Application of this technology may improve workflow and enhance patient safety.

4.
Front Hum Neurosci ; 14: 54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292333

RESUMO

The Seventh Annual Deep Brain Stimulation (DBS) Think Tank held on September 8th of 2019 addressed the most current: (1) use and utility of complex neurophysiological signals for development of adaptive neurostimulation to improve clinical outcomes; (2) Advancements in recent neuromodulation techniques to treat neuropsychiatric disorders; (3) New developments in optogenetics and DBS; (4) The use of augmented Virtual reality (VR) and neuromodulation; (5) commercially available technologies; and (6) ethical issues arising in and from research and use of DBS. These advances serve as both "markers of progress" and challenges and opportunities for ongoing address, engagement, and deliberation as we move to improve the functional capabilities and translational value of DBS. It is in this light that these proceedings are presented to inform the field and initiate ongoing discourse. As consistent with the intent, and spirit of this, and prior DBS Think Tanks, the overarching goal is to continue to develop multidisciplinary collaborations to rapidly advance the field and ultimately improve patient outcomes.

5.
Oper Neurosurg (Hagerstown) ; 18(1): E11, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989219

RESUMO

The application of navigation integrated virtual reality (VR) in neurosurgery is an emerging paradigm that may offer improved situational awareness for the surgeon. Here, we present a case of a complex arteriovenous malformation (AVM) with complex venous drainage and observe how VR impacted structural delineation during approach, resection, and overall strategic planning. The patient was a 30-yr-old female with no past medical history who presented with headaches and a generalized tonic clonic seizure. Workup included computed tomography, computed tomography angiography, magnetic resonance imaging, magnetic resonance angiography, and magnetic resonance venography; a high flow right frontal AVM was found. The AVM was safely resected using navigation integrated with VR; careful arterial devascularization preceded resection of the draining veins and then the AVM nidus. Postoperative scans confirmed complete resection of the AVM. This case outlines the application of a current state-of-the-art VR platform to assist the craniotomy for resection of an AVM.

6.
Oper Neurosurg (Hagerstown) ; 15(2): 184-193, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040677

RESUMO

BACKGROUND: The use of intraoperative navigation during microscope cases can be limited when attention needs to be divided between the operative field and the navigation screens. Heads-up display (HUD), also referred to as augmented reality, permits visualization of navigation information during surgery workflow. OBJECTIVE: To detail our initial experience with HUD. METHODS: We retrospectively reviewed patients who underwent HUD-assisted surgery from April 2016 through April 2017. All lesions were assessed for accuracy and those from the latter half of the study were assessed for utility. RESULTS: Seventy-nine patients with 84 pathologies were included. Pathologies included aneurysms (14), arteriovenous malformations (6), cavernous malformations (5), intracranial stenosis (3), meningiomas (27), metastasis (4), craniopharygniomas (4), gliomas (4), schwannomas (3), epidermoid/dermoids (3), pituitary adenomas (2) hemangioblastoma (2), choroid plexus papilloma (1), lymphoma (1), osteoblastoma (1), clival chordoma (1), cerebrospinal fluid leak (1), abscess (1), and a cerebellopontine angle Teflon granuloma (1). Fifty-nine lesions were deep and 25 were superficial. Structures identified included the lesion (81), vessels (48), and nerves/brain tissue (31). Accuracy was deemed excellent (71.4%), good (20.2%), or poor (8.3%). Deep lesions were less likely to have excellent accuracy (P = .029). HUD was used during bed/head positioning (50.0%), skin incision (17.3%), craniotomy (23.1%), dural opening (26.9%), corticectomy (13.5%), arachnoid opening (36.5%), and intracranial drilling (13.5%). HUD was deactivated at some point during the surgery in 59.6% of cases. There were no complications related to HUD use. CONCLUSION: HUD can be safely used for a wide variety of vascular and oncologic intracranial pathologies and can be utilized during multiple stages of surgery.


Assuntos
Neoplasias Encefálicas/cirurgia , Aneurisma Intracraniano/cirurgia , Neuronavegação/métodos , Cirurgia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA