Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202300915, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758018

RESUMO

Infrared (IR) emission bands by interstellar Polycyclic Aromatic Hydrocarbons (PAHs) and Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are observed towards a large variety of interstellar objects and offer detailed insights into the chemistry and physics of the interstellar medium. The analysis of the emission bands, and thus the interpretation of the molecular characteristics of the carriers, heavily relies on the use of density functional theory (DFT) calculated IR spectra. However, there are significant challenges in accurately predicting the experimental IR band positions, particularly for PANH emission vibrational modes around 6 mm. In this work, we present gas-phase mid-infrared (mid-IR) spectra of cationic 3-azafluoranthene (3AF.+) and protonated 3-azafluoranthene (3AFH+) to investigate their experimental IR band positions in relation to DFT calculated bands. The experimental spectra are compared to DFT simulated spectra, where different approaches were followed to correct for anharmonicities. The best agreement is achieved by scaling frequencies of modes with large nitrogen displacements with a different factor. Even though our findings might be limited to a small number of PANH structures, they indicate, that nitrogen atom incorporation needs to be accounted for by carefully adjusting the corresponding scaling factors while computing IR spectra of PANHs on DFT level.

2.
Phys Chem Chem Phys ; 26(21): 15547-15558, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38756091

RESUMO

Polycyclic aromatic nitrogen heterocycles (PANHs) are present in various astronomical environments where they are subjected to intense radiation. Their photodissociation pathways give crucial insights into the cycle of matter in the universe, yet so far only the dissociation characteristics of few PANHs have been investigated. Moreover, most experiments use single photon techniques that only reveal the initial dissociation step, and are thus unsuited to replicate astronomical environments and timescales. In this work, we use the Instrument for the Photodynamics of PAHs (i-PoP) at the Laboratory for Astrophysics to simulate the interstellar photodissociation of a model PANH, cationic triazacoronene (TAC˙+, C21H9N3). Comparing the observed fragments to similar PAHs such as the isoelectronic coronene can give mechanistic insight into PAH dissociation. For coronene the major photodissociation products were found to be C9H+, C10+, and C11+. In contrast, fragmentation in TAC˙+ is initiated by up to three HCN losses often in combination with H- or H2 losses. In the lower mass region, the fragments show similarities to comparable PAHs like coronene, but for TAC˙+ the inclusion of nitrogen atoms into the ionic fragments in the form of e.g. (di)cyanopolyynes is also observed. These nitrogen-containing species may be important tracers of regions in interstellar space where interstellar PANHs are being photodissociated.

3.
Phys Chem Chem Phys ; 25(42): 29070-29079, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861750

RESUMO

The threshold photoionization and dissociative ionization of benzonitrile (C6H5CN) were studied using double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy at the Vacuum Ultraviolet (VUV) beamline of the Swiss Light Source (SLS). The threshold photoelectron spectrum was recorded from 9.6 to 12.7 eV and Franck-Condon simulations of ionization into the ionic ground state, X̃+, as well as the B̃+ and C̃+ states were performed to assign the observed vibronic structures. The adiabatic ionization energies of the X̃+, B̃+ and C̃+ states are determined to be (9.72 ± 0.02), (11.85 ± 0.03) and, tentatively, (12.07 ± 0.04) eV, respectively. Threshold ionization mass spectra were recorded from 13.75 to 19.75 eV and the breakdown diagram was constructed by plotting the fractional abundances of the parent ion and ionic dissociation products as a function of photon energy. The seven lowest energy dissociative photoionization channels of benzonitrile were found to yield CN˙ + c-C6H5+, HCN + C6H4˙+, C2H4 + HC5N˙+, HC3N + C4H4˙+, H2C3N˙ + C4H3+, CH2CHCN + C4H2˙+ and H2C4N˙ + c-C3H3+. HCN loss from the benzonitrile cation is the dominant dissociation channel from the dissociation onset of up to 18.1 eV and CH2CHCN loss becomes dominant from 18.1 eV and up. We present extensive potential energy surface calculations on the C6H5CN˙+ surface to rationalize the detected products. The breakdown diagram and time-of-flight mass spectra are fitted using a Rice-Ramsperger-Kassel-Marcus statistical model. Anchoring the fit to the CBS-QB3 result (3.42 eV) for the barrier to HCN loss, we obtained experimental dissociation barriers for the products of 4.30 eV (CN loss), 5.53 eV (C2H4 loss), 4.33 eV (HC3N loss), 5.15 eV (H2C3N loss), 4.93 eV (CH2CHCN loss) and 4.41 eV (H2C4N loss). We compare our work to studies of the electron-induced dissociative ionization of benzonitrile and isoelectronic phenylacetylene (C8H6), as well as the VUV-induced dissociation of protonated benzonitrile (C6H5CNH+). Also, we discuss the potential role of barrierless association reactions found for some of the identified fragments as a source of benzonitrile(˙+) in interstellar chemistry and in Titan's atmosphere.

4.
Phys Chem Chem Phys ; 25(6): 4511-4518, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36445209

RESUMO

Trimethylborane (TMB) and its chemistry upon pyrolysis have been investigated by threshold photoelectron spectroscopy. TMB shows an unstructured spectrum and its adiabatic ionization energy (IEad) has been determined to be 9.93 ± 0.1 eV. Dissociative photoionization induces a methyl radical loss in TMB and the barrier to dissociation in the cation is measured to be 0.65 ± 0.1 eV. Upon pyrolysis methane loss dominates, leading to C2H5B, which can exist in five different isomeric structures. Quantum chemical calculations were used to investigate possible methane loss mechanisms as well as the isomerization pathways on the C2H5B potential energy surface. Through isomer-selective photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) the two isomers CH3BCH2 and CH3CHBH were identified by their ms-TPE spectra and IEad values of 8.55 ± 0.02 eV and 8.73 ± 0.02 eV were determined, respectively. A second channel leading to the loss of ethene from TMB forms CH2BH, which exhibits an IEad value of 9.37 ± 0.03 eV. The reaction mechanism in the literature needs to be expanded by an additional methane loss from the intermediately formed ethyl methyl borane.

5.
Chemistry ; 28(42): e202201378, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35622451

RESUMO

We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X+ 2 E←X 1 A1 transition. Although the threshold photoelectron spectrum appears at first glance to be similar to the one of the isosteric ethane, the electronic situation differs markedly, due to different orbital energies. In addition, an appearance energy AE0K (NH3 BH3 , NH3 BH2 + )= 10.00±0.03 eV has been determined, corresponding to the loss of a hydrogen atom at the BH3 -site. From the data, a 0 K bond dissociation energy for the B-H bond in the cation of 71.5±3 kJ mol-1 was derived, whereas the one in the neutral compound has been estimated to be 419±10 kJ mol-1 .

6.
J Phys Chem A ; 126(14): 2211-2221, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357143

RESUMO

The threshold photoelectron spectra of cinnoline, quinazoline, and quinoxaline, three small naphthalene-analogue polycyclic nitrogen-containing hydrocarbons of C8H6N2 composition, were recorded. The spectra are assigned to understand their electronic structure and the role of isomerism. Furthermore, this work provides reference data for the selective identification of such species as gas-phase reaction products at low number densities. Imaging photoelectron photoion coincidence spectroscopy was used at the VUV beamline of the Swiss Light Source to record the spectra from the ionization onset to 12 eV. To assign and interpret the spectral features, we relied on (time-dependent) density functional theory and EOM-IP-CCSD calculations and computed vertical and adiabatic ionization energies as well as Franck-Condon factors to simulate ground- and excited-state spectra. Vibrational progressions belonging to four electronic states could be simulated in each of the samples, and we report a total of 12 adiabatic ionization energies, including the ones to the ground and excited cation states. Such a wealth of spectral information, as well as the reliable ab initio modeling, is promising with regards to analytical applications. While cinnoline can be easily distinguished by its lowest adiabatic ionization energy, quinazoline and quinoxaline show different vibrational fingerprints, which can be used to distinguish the three isomers even in complex reaction mixtures. Finally, we also relate the cation electronic states to the neutral molecular orbitals and note that Koopmans' approximation fails in these N2-containing species very much like it does in N2.

7.
Phys Chem Chem Phys ; 24(1): 20-24, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889911

RESUMO

We report the mass-selected threshold photoelectron spectrum (ms-TPES) of iminoborane (HBNH), generated by pyrolysis of borazine. The adiabatic ionization energy (IE) of the X+ 2Π â† X 1Σ+ transition was determined to be 11.31 ± 0.02 eV and the wavenumber of the B-N stretching vibration in the cation was measured to be 1550 cm-1. The Renner-Teller splitting in the X+ 2Π state gives rise to two sets of vibrational progressions, separated by 70 meV.

8.
Chemphyschem ; 22(21): 2164-2167, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390518

RESUMO

We investigate NCl3 and the NCl2 radical by photoelectron-photoion coincidence spectroscopy using synchrotron radiation. The mass selected threshold photoelectron spectrum (ms-TPES) of NCl3 is broad and unstructured due to the large geometry change. An ionization energy of 9.7±0.1 eV is estimated from the spectrum and supported by computations. NCl2 is generated by photolysis at 213 nm from NCl3 and its ms-TPES shows an extended vibrational progression with a 90 meV spacing that is assigned to the symmetric N-Cl stretching mode in the cation. An adiabatic ionization energy of 9.94 ± 0.02 eV is determined.

9.
Chemistry ; 27(56): 14057-14072, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34327730

RESUMO

The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ . Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.


Assuntos
DNA , RNA
10.
J Phys Chem Lett ; 12(29): 6901-6906, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279954

RESUMO

The C4H4 isomer cyclobutadiene (CBD) is the prime model for antiaromaticity and thus a molecule of considerable interest in chemistry. Because it is highly reactive, it can only be studied under isolated conditions. Its electronic structure is characterized by a pseudo-Jahn-Teller effect in the neutral and a E ⊗ ß Jahn-Teller effect in the cation. As a result, recording photoelectron spectra as well as describing them theoretically has been challenging. Here we present the photoion mass-selected threshold photoelectron spectrum of cyclobutadiene together with a simulation based on time-dependent wavepacket dynamics that includes vibronic coupling in the ion, taking into account eight vibrational modes in the cation. Excellent agreement between theory and experiment is found, and the ionization energy is revised to 8.06 ± 0.02 eV.

11.
Phys Chem Chem Phys ; 23(2): 1539-1549, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404571

RESUMO

The reaction kinetics of the isomers of the methylallyl radical with molecular oxygen has been studied in a flow tube reactor at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source storage ring. The radicals were generated by direct photodissociation of bromides or iodides at 213 nm. Experiments were conducted at room temperature and low pressures between 1 and 3 mbar using He as the buffer gas. Oxygen was employed in excess to maintain near pseudo-first-order reaction conditions. Concentration-time profiles of the radical were monitored by photoionisation. For the oxidation of 2-methylallyl (2-MA) and with k(2-MA + O2) = (5.1 ± 1.0) × 1011 cm3 mol-1 s-1, the rate constant was found to be in the high-pressure limit already at 1 mbar. In contrast, 1-methylallyl exists in two isomers, E- and Z-1-methylallyl. We selectively detected the E-conformer as well as a mixture of both isomers and observed almost identical rate constants within the uncertainty of the experiment. A small pressure dependence is observed with the rate constant increasing from k(1-MA + O2) = (3.5 ± 0.7) × 1011 cm3 mol-1 s-1 at 1 mbar to k(1-MA + O2) = (4.6 ± 0.9) × 1011 cm3 mol-1 s-1 at 3 mbar. While for 2-methylallyl + O2 no previous experimental data are available, the rate constants for 1-methylallyl are in agreement with previous work. A comparison is drawn for the trends of the high-pressure limiting rate constants and pressure dependences observed for the O2 recombination of allylic radicals with the corresponding reactions of alkyl radicals.

12.
J Chem Phys ; 153(12): 124306, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003730

RESUMO

We report a synchrotron radiation vacuum ultraviolet photoionization study of the hydroperoxyl radical (HO2), a key reaction intermediate in combustion and atmospheric chemistry as well as astrochemistry, using double imaging photoelectron photoion coincidence spectroscopy. The HO2 radical is formed in a microwave discharge flow tube reactor through a set of reactions initiated by F atoms in a CH4/O2/He gas mixture. The high-resolution threshold photoelectron spectrum of HO2 in the 11 eV-12 eV energy range is acquired without interferences from other species and assigned with the aid of theoretically calculated adiabatic ionization energies (AIEs) and Franck-Condon factors. The three vibrational modes of the radical cation HO2 +, the H-O stretch, the H-O-O bend, and the O-O stretch, have been identified, and their individual frequencies are measured. In addition, the AIEs of the X3A″ ground state and the a1A' first excited electronic state of HO2 + are experimentally determined at 11.359 ± 0.003 eV and 11.639 ± 0.005 eV, respectively, in agreement with high-level theoretically computed results. Furthermore, the former AIE value provides validation of thermochemical networks used to extract the enthalpy of formation of the HO2 radical.

13.
Chem Sci ; 11(29): 7562-7568, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874526

RESUMO

We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe3 by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe3 to give [BiMe2]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol-1, which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe2 bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe2]• and BiMe are accessible as reactive intermediates under these conditions.

14.
Chemphyschem ; 20(19): 2413-2416, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508875

RESUMO

Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass-selective threshold photoelectron spectroscopy (ms-TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin-spin interaction in the 3 Σ- ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I-O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I-O stretch, is apparent in both spectra.

15.
J Phys Chem A ; 123(10): 2008-2017, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30776230

RESUMO

Mass-selective threshold photoelectron spectroscopy in the gas phase was employed to characterize the dialkynyl triplet carbenes pentadiynylidene (HC5H), methylpentadiynylidene (MeC5H), and dimethylpentadiynylidene (MeC5Me). Diazo compounds were employed as precursors to generate the carbenes by flash pyrolysis. The R1-C5-R2 carbon chains were photoionized by vacuum ultraviolet (VUV) synchrotron radiation in photoelectron photoion coincidence (PEPICO) experiments. High-level ab initio computations were carried out to support the interpretation of the experiments. For the unsubstituted pentadiynylidene (R1 = R2 = H) the recorded spectrum yields an adiabatic ionization energy (IEad) of 8.36 ± 0.03 eV. In addition, a second carbene isomer, 3-(didehydrovinylidene)cyclopropene, with a singlet electronic ground state, was identified in the spectrum based on the IEad of 8.60 ± 0.03 eV and Franck-Condon simulations. We found that multireference computations are required to reliably calculate the IEad for this molecule. CASPT2 computations predicted an IEad = 8.55 eV, while coupled-cluster computations significantly overestimate the IE. The cyclic isomer is most likely formed from another isomer of the precursor present in the sample. Stepwise methyl-substitution of the carbene leads to a reduction of the IE to 7.77 ± 0.04 eV for methylpentadiynylidene and 7.27 ± 0.06 eV for dimethylpentadiynylidene. The photoionization and dissociative photoionization of the precursors is investigated as well.

16.
J Phys Chem Lett ; 9(20): 5921-5925, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30234995

RESUMO

Diborenes, R-BB-R', are of current interest in inorganic chemistry because they offer the opportunity to tune the properties of a biradical by modifying the substituents of the diborene parent, HBBH. Here we synthesize the elusive diborene by H atom abstraction from diborane, B2H6, using fluorine atoms and report a vibrationally resolved photoelectron spectrum of the HBBH biradical. The spectrum is interpreted by comparison with high-level ab initio computations, taking into account the Renner-Teller splitting in the X+ 2Π ionic ground state, which show an excellent agreement with the experimental spectrum. An adiabatic ionization energy of 9.080 ± 0.015 eV was determined, and a vibrational progression in the boron-boron stretching vibration of 0.14 eV is visible. This is due to the reduction of bond order upon ionization, accompanied by an increase of the computed boron-boron bond length, RBB, from 1.514 to 1.606 Å.

17.
Chemphyschem ; 19(1): 138-147, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29028145

RESUMO

Tetrazolium salts are exploited in various fields of research by virtue of their low reduction potentials. Increasingly, associated applications also attend to the photochemical and luminescence properties of these systems. Here, we investigate the photoinduced dynamics of phenyl-benzo[c]tetrazolo-cinnolinium chloride (PTC), one of the very few known fluorescent tetrazolium compounds, by using time-correlated single-photon counting, femtosecond fluorescence upconversion, and ultrafast transient absorption spectroscopy. PTC is generated photochemically by ultraviolet illumination of 2,3,5-triphenyl-tetrazolium chloride (TTC) in various alcohols. Time-resolved fluorescence measurements on PTC with different excitation wavelengths disclose biphasic solvation and vibrational relaxation dynamics. Depending on the solvent, the emission behavior of PTC is characterized by quantum yields on the order of several tens of percent and corresponding excited-state lifetimes of several hundreds of picoseconds. The radiative rate is basically constant for the studied alcohols, whereas the rate of the competing non-radiative process is sensitive to the solvent polarity. Hence, we discuss the possible involvement of intermediate radicals and further presumptive reaction pathways pursued after photoexcitation of PTC.

18.
J Phys Chem Lett ; 8(17): 4038-4042, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28796511

RESUMO

The cyano radical is a ubiquitous molecule and was, for instance, one of the first species detected in astrophysical media such as comets or diffuse clouds. In photodissociation regions, the reaction rate of CN+ + CO → CN + CO+ is one of the critical parameters defining nitrile chemistry. The enthalpy of this charge transfer reaction is defined as the difference of ionization energies (EI) between CN and CO. Although EI(CO) is known accurately, the EI(CN) values are more dispersed and deduced indirectly from thermodynamic thresholds only, all above EI(CO), leading to the assumption that the reaction is fast even at low temperature. Using a combination of synchrotron radiation, electron/ion imaging coincidence techniques, and supporting ab initio calculations, we directly determine the first adiabatic ionization energy of CN at 13.956(7) eV, and we demonstrate that EI(CN) < EI(CO). The findings suggest a very slow reaction in the cold regions of interstellar media.

19.
Chemphyschem ; 16(15): 3143-6, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26331990

RESUMO

Radicals in solution are crucial for many chemical processes. In this work, we unveil the photoreaction sequence leading to radical formation from tetrazolium salts, which are extensively used in enzyme assays and also exhibit a rich photochemistry. Upon UV irradiation, the tetrazolium ion turns into the tetrazolinyl radical via two intermediates on a nanosecond timescale. The solvent's polarity governs the rate of formation, but the reaction pathway towards the tetrazolinyl radical is identical for aqueous and alcoholic solutions, although the final photoproduct distribution differs. These observations provide new insight into the versatile reactivity of tetrazolium salts and ultrafast radical formation in the liquid phase.


Assuntos
Fotoquímica , Tetrazóis/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA