Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(11): 2411-2424, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578501

RESUMO

ABSTRACT: Somatosensory information is delivered to neuronal networks of the dorsal horn (DH) of the spinal cord by the axons of primary afferent neurons that encode the intensity of peripheral sensory stimuli under the form of a code based on the frequency of action potential firing. The efficient processing of these messages within the DH involves frequency-tuned synapses, a phenomenon linked to their ability to display activity-dependent forms of short-term plasticity (STP). By affecting differently excitatory and inhibitory synaptic transmissions, these STP properties allow a powerful gain control in DH neuronal networks that may be critical for the integration of nociceptive messages before they are forwarded to the brain, where they may be ultimately interpreted as pain. Moreover, these STPs can be finely modulated by endogenous signaling molecules, such as neurosteroids, adenosine, or GABA. The STP properties of DH inhibitory synapses might also, at least in part, participate in the pain-relieving effect of nonpharmacological analgesic procedures, such as transcutaneous electrical nerve stimulation, electroacupuncture, or spinal cord stimulation. The properties of target-specific STP at inhibitory DH synapses and their possible contribution to electrical stimulation-induced reduction of hyperalgesic and allodynic states in chronic pain will be reviewed and discussed.

2.
Front Mol Neurosci ; 15: 903087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860500

RESUMO

The dorsal horn (DH) of the spinal cord is an important structure involved in the integration of nociceptive messages. Plastic changes in the properties of neuronal networks in the DH underlie the development of analgesia as well as of hyperalgesia and allodynia in acute and chronic pain states. Two key mechanisms are involved in these chronic pain states: increased electrical activities and glutamate release leading to the recruitment of NMDAr and plastic changes in the synaptic inhibition. Although: (1) the balance between excitation and inhibition is known to play a critical role in the spinal network; and (2) plastic changes in spinal excitation and inhibition have been studied separately, the relationship between these two mechanisms has not been investigated in detail. In the present work, we addressed the role of NMDA receptors in the modulation of GABAergic synaptic transmission in the DH network. Using tight-seal whole-cell recordings on adult mice DH neurons, we characterized the effect of NMDAr activation on inhibitory synaptic transmission and more especially on the GABAergic one. Our results show that, in a subset of neurons recorded in lamina II, NMDAr activation facilitates spontaneous and miniature GABAergic synaptic transmission with a target specificity on GABAergic interneurons. In contrast, NMDA reduced the mean amplitude of evoked GABAergic IPSCs. These results show that NMDAr modulate GABAergic transmission by a presynaptic mechanism of action. Using a pharmacological approach, we investigated the composition of NMDAr involved in this modulation of GABAergic synaptic transmission. We found that the NMDA-induced facilitation was mediated by the activation of NMDAr containing GluN2C/D subunits. Altogether, our results bring new insights on nociceptive information processing in the spinal cord network and plastic changes in synaptic inhibition that could underlie the development and maintenance of chronic pain.

3.
Pain ; 163(5): e675-e688, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34490851

RESUMO

ABSTRACT: Networks of the dorsal horn of the spinal cord process nociceptive information from the periphery. In these networks, the excitation-inhibition balance is critical to shape this nociceptive information and to gate it to the brain where it is interpreted as pain. Our aim was to define whether short-term plasticity of inhibitory connections could tune this inhibition-excitation balance by differentially controlling excitatory and inhibitory microcircuits. To this end, we used spinal cord slices from adult mice expressing enhanced green fluorescent protein (eGFP) under the GAD65 promoter and recorded from both eGFP+ (putative inhibitory) and eGFP- (putative excitatory) neurons of lamina II while stimulating single presynaptic GABAergic interneurons at various frequencies. Our results indicate that GABAergic neurons of lamina II simultaneously contact eGFP- and eGFP+ neurons, but these connections display very different frequency-dependent short-term plasticities. Connections onto eGFP- interneurons displayed limited frequency-dependent changes and strong time-dependent summation of inhibitory synaptic currents that was however subjected to a tonic activity-dependent inhibition involving A1 adenosine receptors. By contrast, GABAergic connections onto eGFP+ interneurons expressed pronounced frequency-dependent depression, thus favoring disinhibition at these synapses by a mechanism involving the activation of GABAB autoreceptors at low frequency. Interestingly, the balance favors inhibition at frequencies associated with intense pain, whereas it favors excitation at frequencies associated with low pain. Therefore, these target-specific and frequency-specific plasticities allow to tune the balance between inhibition and disinhibition while processing frequency-coded information from primary afferents. These short-term plasticities and their modulation by A1 and GABAB receptors might represent an interesting target in pain-alleviating strategies.


Assuntos
Nociceptividade , Células do Corno Posterior , Animais , Neurônios GABAérgicos , Interneurônios/fisiologia , Camundongos , Inibição Neural/fisiologia , Dor/metabolismo , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal
4.
Neuropharmacology ; 205: 108909, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875284

RESUMO

Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory nervous system. It is accompanied by neuronal and non-neuronal alterations, including alterations in intracellular second messenger pathways. Cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are regulated by phosphodiesterase (PDE) enzymes. Here, we studied the impact of PDE inhibitors (PDEi) in a mouse model of peripheral nerve injury induced by placing a cuff around the main branch of the sciatic nerve. Mechanical hypersensitivity, evaluated using von Frey filaments, was relieved by sustained treatment with the non-selective PDEi theophylline and ibudilast (AV-411), with PDE4i rolipram, etazolate and YM-976, and with PDE5i sildenafil, zaprinast and MY-5445, but not by treatments with PDE1i vinpocetine, PDE2i EHNA or PDE3i milrinone. Using pharmacological and knock-out approaches, we show a preferential implication of delta opioid receptors in the action of the PDE4i rolipram and of both mu and delta opioid receptors in the action of the PDE5i sildenafil. Calcium imaging highlighted a preferential action of rolipram on dorsal root ganglia non-neuronal cells, through PDE4B and PDE4D inhibition. Rolipram had anti-neuroimmune action, as shown by its impact on levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNFα) in the dorsal root ganglia of mice with peripheral nerve injury, as well as in human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides. This study suggests that PDEs, especially PDE4 and 5, may be targets of interest in the treatment of neuropathic pain.


Assuntos
Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/complicações , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hiperalgesia/etiologia , Camundongos , Neuralgia/etiologia , Rolipram/farmacologia
5.
Neurobiol Dis ; 155: 105363, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845128

RESUMO

Endogenous acetylcholine (ACh) is an important modulator of nociceptive sensory processing in the spinal cord. An increased level of spinal ACh induces analgesia both in humans and rodents while interfering with cholinergic signaling is allodynic, demonstrating that a basal tone of spinal ACh modulates nociceptive responses in naïve animals. The plasticity undergone by this cholinergic system in chronic pain situation is unknown, and the mere presence of this tone in neuropathic animals is controversial. We have addressed these issues in mice through behavioral experiments, histology, electrophysiology and molecular biology, in the cuff model of peripheral neuropathy. Our behavior experiments demonstrate the persistence, and even increased impact of the analgesic cholinergic tone acting through nicotinic receptors in cuff animals. The neuropathy does not affect the number or membrane properties of dorsal horn cholinergic neurons, nor specifically the frequency of their synaptic inputs. The alterations thus appear to be in the neurons receiving the cholinergic signaling, which is confirmed by the fact that subthreshold doses of acetylcholinesterase (AChE) inhibitors in sham animals become anti-allodynic in cuff mice and by the altered expression of the ß2 nicotinic receptor subunit. Our results demonstrate that endogenous cholinergic signaling can be manipulated to relieve mechanical allodynia in animal models of peripheral neuropathy. Until now, AChE inhibitors have mainly been used in the clinics in situations of acute pain (parturition, post-operative). The fact that lower doses (thus with fewer side effects) could be efficient in chronic pain conditions opens new avenues for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT: Chronic pain continues to be the most common cause of disability that impairs the quality of life, accruing enormous and escalating socio-economic costs. A better understanding of the plasticity of spinal neuronal networks, crucially involved in nociceptive processing, could help designing new therapeutic avenues. We here demonstrate that chronic pain modifies the spinal nociceptive network in such a way that it becomes more sensitive to cholinergic modulations. The spinal cholinergic system is responsible for an analgesic tone that can be exacerbated by acetylcholinesterase inhibitors, a property used in the clinic to relief acute pain (child birth, post-op). Our results suggest that lower doses of acetylcholinesterases, with even fewer side effects, could be efficient to relieve chronic pain.


Assuntos
Analgesia/métodos , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Neuralgia/metabolismo , Limiar da Dor/fisiologia , Medula Espinal/metabolismo , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neuralgia/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
6.
Med Sci (Paris) ; 37(2): 141-151, 2021 Feb.
Artigo em Francês | MEDLINE | ID: mdl-33591257

RESUMO

Autistic subjects frequently display sensory anomalies. Those regarding nociception and its potential outcome, pain, are of crucial interest. Indeed, because of numerous comorbidities, autistic subjects are more often exposed to painful situation. Despite being often considered as less sensitive, experimental studies evaluating this point are failing to reach consensus. Using animal model can help reduce variability and bring, regarding autism, an overview of potential alterations of the nociceptive system at the cellular and molecular level.


TITLE: Nociception, douleur et autisme. ABSTRACT: Les sujets autistes présentent fréquemment des anomalies sensorielles. Celles concernant la nociception ainsi que sa potentielle résultante, la douleur, sont d'un intérêt capital. En effet, du fait de nombreuses comorbidités, les sujets autistes sont plus souvent exposés à des situations douloureuses que la population générale. Alors qu'ils sont souvent considérés comme moins sensibles, les études expérimentales sur ce point sont loin de faire consensus. Utiliser des modèles animaux pourrait permettre de s'affranchir de certaines sources de variabilité et d'apporter, dans le cadre de l'autisme, une vue d'ensemble des altérations potentielles du système nociceptif aux niveaux cellulaire et moléculaire.


Assuntos
Transtorno Autístico , Nociceptividade/fisiologia , Dor/etiologia , Animais , Transtorno Autístico/complicações , Transtorno Autístico/epidemiologia , Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Humanos , Dor/epidemiologia , Medição da Dor , Limiar da Dor/psicologia
7.
Brain Struct Funct ; 225(7): 2029-2044, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642914

RESUMO

Increasing evidence points to the engagement of the lateral habenula (LHb) in the selection of appropriate behavioral responses in aversive situations. However, very few data have been gathered with respect to its role in fear memory formation, especially in learning paradigms in which brain areas involved in cognitive processes like the hippocampus (HPC) and the medial prefrontal cortex (mPFC) are required. A paradigm of this sort is trace fear conditioning, in which an aversive event is preceded by a discrete stimulus, generally a tone, but without the close temporal contiguity allowing for their association based on amygdala-dependent information processing. In a first experiment, we analyzed cellular activations (c-Fos expression) induced by trace fear conditioning in subregions of the habenular complex, HPC, mPFC and amygdala using a factorial analysis to unravel functional networks through correlational analysis of data. This analysis suggested that distinct LHb subregions engaged in different aspects of conditioning, e.g. associative processes and onset of fear responses. In a second experiment, we performed chemogenetic LHb inactivation during the conditioning phase of the trace fear conditioning paradigm and subsequently assessed contextual and tone fear memories. Whereas LHb inactivation did not modify rat's behavior during conditioning, it induced contextual memory deficits and enhanced fear to the tone. These results demonstrate the involvement of the LHb in fear memory. They further suggest that the LHb is engaged in learning about threatening environments through the selection of relevant information predictive of a danger.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Habenula/metabolismo , Memória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Reação de Congelamento Cataléptica/fisiologia , Masculino , Atividade Motora/fisiologia , Córtex Pré-Frontal/metabolismo , Ratos Long-Evans
8.
Purinergic Signal ; 15(3): 403-420, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31444738

RESUMO

Human embryonic kidney 293 (HEK293) cells stably transfected with the rat P2X2 receptor subunit were preincubated with 200 nM progesterone (HEK293-P2X2-PROG), a potent positive allosteric modulator of homomeric P2X2 receptors, and used to detect low nanomolar concentrations of extracellular ATP. Fura-2-loaded HEK293-P2X2-PROG cells were acutely plated on top of cultured DH glial cells to quantify ATP release from single DH glial cells. Application of the α1 adrenoceptor agonist phenylephrine (PHE, 20 µM) or of a low K+ (0.2 mM) solution evoked reversible increases in the intracellular calcium concentration ([Ca2+]i) in the biosensor cells. A reversible increase in [Ca2+]i was also detected in half of the biosensor cells following the interruption of general extracellular perfusion. All increases in [Ca2+]i were blocked in the presence of the P2X2 antagonist PPADS or after preloading the glial cells with the calcium chelator BAPTA, indicating that they were due to calcium-dependent ATP release from the glial cells. ATP release induced by PHE was blocked by -L-phenylalanine 2-naphtylamide (GPN) that permeabilizes secretory lysosomes and bafilomycin A1 (Baf A1), an inhibitor of the H+-pump of acidic secretory vesicles. By contrast, ATP release induced by application of a low-K+ solution was abolished by Baf A1 but not by GPN. Finally, spontaneous ATP release observed after interrupting general perfusion was insensitive to both GPN and Baf A1 pretreatment. Our results indicate that ATP is released in a calcium-dependent manner from two distinct vesicular pools and one non-vesicular pool coexisting in DH glial cells and that noradrenaline and PHE selectively target the secretory lysosome pool.


Assuntos
Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais/métodos , Neuroglia/metabolismo , Norepinefrina/farmacologia , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Ratos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
9.
Neuroscience ; 338: 230-247, 2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27595888

RESUMO

The dorsal horn (DH) of the spinal cord receives a variety of sensory information arising from the inner and outer environment, as well as modulatory inputs from supraspinal centers. This information is integrated by the DH before being forwarded to brain areas where it may lead to pain perception. Spinal integration of this information relies on the interplay between different DH neurons forming complex and plastic neuronal networks. Elements of these networks are therefore potential targets for new analgesics and pain-relieving strategies. The present review aims at providing an overview of the current knowledge on these networks, with a special emphasis on those involving interlaminar communication in both physiological and pathological conditions.


Assuntos
Dor Nociceptiva/fisiopatologia , Corno Dorsal da Medula Espinal/fisiopatologia , Animais , Humanos , Vias Neurais/fisiopatologia , Sinapses/fisiologia
10.
Pain ; 157(7): 1432-1442, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26934510

RESUMO

Plasticity of inhibitory transmission in the spinal dorsal horn (SDH) is believed to be a key mechanism responsible for pain hypersensitivity in neuropathic pain syndromes. We evaluated this plasticity by recording responses to mechanical stimuli in silent neurons (nonspontaneously active [NSA]) and neurons showing ongoing activity (spontaneously active [SA]) in the SDH of control and nerve-injured mice (cuff model). The SA and NSA neurons represented 59% and 41% of recorded neurons, respectively, and were predominantly wide dynamic range (WDR) in naive mice. Nerve-injured mice displayed a marked decrease in the mechanical threshold of the injured paw. After nerve injury, the proportion of SA neurons was increased to 78%, which suggests that some NSA neurons became SA. In addition, the response to touch (but not pinch) was dramatically increased in SA neurons, and high-threshold (nociceptive specific) neurons were no longer observed. Pharmacological blockade of spinal inhibition with a mixture of GABAA and glycine receptor antagonists significantly increased responses to innocuous mechanical stimuli in SA and NSA neurons from sham animals, but had no effect in sciatic nerve-injured animals, revealing a dramatic loss of spinal inhibitory tone in this situation. Moreover, in nerve-injured mice, local spinal administration of acetazolamide, a carbonic anhydrase inhibitor, restored responses to touch similar to those observed in naive or sham mice. These results suggest that a shift in the reversal potential for anions is an important component of the abnormal mechanical responses and of the loss of inhibitory tone recorded in a model of nerve injury-induced neuropathic pain.


Assuntos
Potenciais de Ação/fisiologia , Neuralgia/fisiopatologia , Células do Corno Posterior/fisiologia , Corno Dorsal da Medula Espinal/fisiopatologia , Acetazolamida/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Inibidores da Anidrase Carbônica/farmacologia , Modelos Animais de Doenças , Camundongos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Estimulação Física , Células do Corno Posterior/efeitos dos fármacos , Corno Dorsal da Medula Espinal/efeitos dos fármacos
11.
Eur J Neurosci ; 42(9): 2654-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370319

RESUMO

In the dorsal horn of the spinal cord (DH), noradrenaline (NA) is released by axons originating from the locus coeruleus and induces spinal analgesia, the mechanisms of which are poorly understood. Here, the effects of NA on synaptic transmission in the deep laminae (III-V) of the DH were characterized. It was shown that exogenously applied, as well as endogenously released, NA facilitated inhibitory [γ-aminobutyric acid (GABA)ergic and glycinergic] synaptic transmission in laminae III-IV of the DH by activating α1-, α2- and ß-adrenoceptors (ARs). In contrast, NA had no effect on excitatory (glutamatergic) synaptic transmission. Physical interruption of communications between deep and more superficial laminae (by a mechanical transection between laminae IV and V) totally blocked the effects of α2-AR agonists and strongly reduced the effects of α1-AR agonists on inhibitory synaptic transmission in laminae III-IV without directly impairing synaptic release of GABA or glycine from neurons. Short-term pretreatment of intact spinal cord slices with the glial cell metabolism inhibitor fluorocitrate or pharmacological blockade of ionotropic glutamate and ATP receptors mimicked the consequences of a mechanical transection between laminae IV and V. Taken together, the current results indicate that the facilitation of inhibitory synaptic transmission in laminae III-IV of the DH by NA requires functional interlaminar connections between deep and more superficial laminae, and might strongly depend on glia to neuron interactions. These interlaminar connections and glia to neuron interactions could represent interesting targets for analgesic strategies.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Norepinefrina/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Agonistas Adrenérgicos/farmacologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neuroglia/fisiologia , Norepinefrina/farmacologia , Ratos , Receptores de AMPA/fisiologia , Receptores Adrenérgicos/fisiologia , Receptores de Ácido Caínico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Purinérgicos P2/fisiologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos
12.
Eur J Neurosci ; 40(8): 3189-201, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104469

RESUMO

Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.


Assuntos
Neurônios/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Transmissão Sináptica , Canais de Cátion TRPV/fisiologia , Vias Aferentes , Animais , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Hiperalgesia/induzido quimicamente , Masculino , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/agonistas
13.
Neurobiol Dis ; 60: 39-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23978467

RESUMO

Neuropathic pain is pain arising as a direct consequence of a lesion or disease affecting the somatosensory system. It is usually chronic and challenging to treat. Some antidepressants are first-line pharmacological treatments for neuropathic pain. The noradrenaline that is recruited by the action of the antidepressants on reuptake transporters has been proposed to act through ß2-adrenoceptors (ß2-ARs) to lead to the observed therapeutic effect. However, the complex downstream mechanism mediating this action remained to be identified. In this study, we demonstrate in a mouse model of neuropathic pain that an antidepressant's effect on neuropathic allodynia involves the peripheral nervous system and the inhibition of cytokine tumor necrosis factor α (TNFα) production. The antiallodynic action of nortriptyline is indeed lost after peripheral sympathectomy, but not after lesion of central descending noradrenergic pathways. More particularly, we report that antidepressant-recruited noradrenaline acts, within dorsal root ganglia, on ß2-ARs expressed by non-neuronal satellite cells. This stimulation of ß2-ARs decreases the neuropathy-induced production of membrane-bound TNFα, resulting in relief of neuropathic allodynia. This indirect anti-TNFα action was observed with the tricyclic antidepressant nortriptyline, the selective serotonin and noradrenaline reuptake inhibitor venlafaxine and the ß2-AR agonist terbutaline. Our data revealed an original therapeutic mechanism that may open novel research avenues for the management of painful peripheral neuropathies.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Receptores Adrenérgicos beta 2/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anticorpos Monoclonais/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Etanercepte , Gânglios Espinais/patologia , Imunoglobulina G/farmacologia , Infliximab , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Norepinefrina/metabolismo , Nortriptilina/farmacologia , Medição da Dor , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
14.
J Neurosci ; 33(9): 3727-37, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447584

RESUMO

Endogenous acetylcholine (ACh) is a well-known modulator of nociceptive transmission in the spinal cord of rodents. It arises mainly from a sparse population of cholinergic interneurons located in the dorsal horn of the spinal cord. This population was thought to be absent from the spinal cord of monkey, what might suggest that spinal ACh would not be a relevant clinical target for pain therapy. In humans, however, pain responses can be modulated by spinal ACh, as evidenced by the increasingly used analgesic procedure (for postoperative and labor patients) consisting of the epidural injection of the acetylcholinesterase inhibitor neostigmine. The source and target of this ACh remain yet to be elucidated. In this study, we used an immunolabeling for choline acetyltransferase to demonstrate, for the first time, the presence of a plexus of cholinergic fibers in laminae II-III of the dorsal horn of the macaque monkey. Moreover, we show the presence of numerous cholinergic cell bodies within the same laminae and compared their density and morphological properties with those previously described in rodents. An electron microscopy analysis demonstrates that cholinergic boutons are presynaptic to dorsal horn neurons as well as to the terminals of sensory primary afferents, suggesting that they are likely to modulate incoming somatosensory information. Our data suggest that this newly identified dorsal horn cholinergic system in monkeys is the source of the ACh involved in the analgesic effects of epidural neostigmine and could be more specifically targeted for novel therapeutic strategies for pain management in humans.


Assuntos
Neurônios Colinérgicos/fisiologia , Células do Corno Posterior/fisiologia , Medula Espinal/citologia , Animais , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/ultraestrutura , Feminino , Imageamento Tridimensional , Macaca fascicularis , Masculino , Camundongos , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Células do Corno Posterior/ultraestrutura , Proteína Quinase C/metabolismo , Especificidade da Espécie , Medula Espinal/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Eur J Neurosci ; 36(11): 3500-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22967006

RESUMO

In acute rat spinal cord slices, the application of capsaicin (5 µm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn.


Assuntos
Nociceptividade/fisiologia , Nociceptores/fisiologia , Células do Corno Posterior/fisiologia , Potenciais de Ação , Animais , Capsaicina/farmacologia , Potenciais Pós-Sinápticos Excitadores , Retroalimentação Fisiológica , Potenciais Pós-Sinápticos Inibidores , Masculino , Potenciais Pós-Sinápticos em Miniatura , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tetrodotoxina/farmacologia
16.
Eur J Neurosci ; 34(8): 1230-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936876

RESUMO

Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.


Assuntos
Ácido Glutâmico/metabolismo , Neurotensina/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Canais de Potássio/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Benzofenantridinas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurotensina/análogos & derivados , Oligopeptídeos/farmacologia , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
17.
Pain ; 152(9): 2131-2137, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21794985

RESUMO

Although cholinergic drugs are known to modulate nociception, the role of endogenous acetylcholine in nociceptive processing remains unclear. In the current study, we evaluated the role of cholinergic transmission through spinal ß(2)-subunit-containing nicotinic acetylcholine receptors in the control of nociceptive thresholds. We show that mechanical and thermal nociceptive thresholds are significantly lowered in ß(2)(∗)-knockout (KO) mice. Using nicotinic antagonists in these mice, we demonstrate that ß(2)(∗)-nAChRs are responsible for tonic inhibitory control of mechanical thresholds at the spinal level. We further hypothesized that tonic ß(2)(∗)-nAChR control of mechanical nociceptive thresholds might implicate GABAergic transmission since spinal nAChR stimulation can enhance inhibitory transmission. Indeed, the GABA(A) receptor antagonist bicuculline decreased the mechanical threshold in wild-type but not ß(2)(∗)-KO mice, and the agonist muscimol restored basal mechanical threshold in ß(2)(∗)-KO mice. Thus, ß(2)(∗)-nAChRs appeared to be necessary for GABAergic control of nociceptive information. As a consequence of this defective inhibitory control, ß(2)(∗)-KO mice were also hyperresponsive to capsaicin-induced C-fiber stimulation. Our results indicate that ß(2)(∗)-nAChRs are implicated in the recruitment of inhibitory control of nociception, as shown by delayed recovery from capsaicin-induced allodynia, potentiated nociceptive response to inflammation and neuropathy, and by the loss of high-frequency transcutaneous electrical nerve stimulation (TENS)-induced analgesia in ß(2)(∗)-KO mice. As high-frequency TENS induces analgesia through Aß-fiber recruitment, these data suggest that ß(2)(∗)-nAChRs may be critical for the gate control of nociceptive information by non-nociceptive sensory inputs. In conclusion, acetylcholine signaling through ß(2)(∗)-nAChRs seems to be essential for setting nociceptive thresholds by controlling GABAergic inhibition in the spinal cord.


Assuntos
Nociceptividade/fisiologia , Limiar da Dor/fisiologia , Receptores Nicotínicos/fisiologia , Medula Espinal/fisiologia , Animais , Masculino , Camundongos , Antagonistas Nicotínicos/farmacologia , Limiar da Dor/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
18.
J Comp Neurol ; 519(16): 3139-58, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21618225

RESUMO

Endogenous acetylcholine is an important modulator of sensory processing, especially at the spinal level, where nociceptive (pain-related) stimuli enter the central nervous system and are integrated before being relayed to the brain. To decipher the organization of the local cholinergic circuitry in the spinal dorsal horn, we used transgenic mice expressing enchanced green fluorescent protein specifically in cholinergic neurons (ChAT::EGFP) and characterized the morphology, neurochemistry, and firing properties of the sparse population of cholinergic interneurons in this area. Three-dimensional reconstruction of lamina III ChAT::EGFP neurons based either on their intrinsic fluorescence or on intracellular labeling in live tissue demonstrated that these neurons have long and thin processes that grow preferentially in the dorsal direction. Their dendrites and axon are highly elongated in the rostrocaudal direction, beyond the limits of a single spinal segment. These unique morphological features suggest that dorsal horn cholinergic interneurons are the main contributors to the plexus of cholinergic processes located in lamina IIi, just dorsal to their cell bodies. In addition, immunostainings demonstrated that dorsal horn cholinergic interneurons in the mouse are γ-aminobutyric acidergic and express nitric oxide synthase, as in rats. Finally, electrophysiological recordings from these neurons in spinal cord slices demonstrate that two-thirds of them have a repetitive spiking pattern with frequent rebound spikes following hyperpolarization. Altogether our results indicate that, although they are rare, the morphological and functional features of cholinergic neurons enable them to collect segmental information in superficial layers of the dorsal horn and to modulate it over several segments.


Assuntos
Interneurônios/citologia , Células do Corno Posterior/citologia , Células do Corno Posterior/fisiologia , Acetilcolina/metabolismo , Animais , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
19.
Neuropharmacology ; 58(3): 569-77, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20004677

RESUMO

P2X receptors are ligand-gated ion channels activated by ATP that are widely expressed in the organism and regulate many physiological functions. We have studied the effect of progesterone (PROG) on native P2X receptors present in rat dorsal root ganglion (DRG) neurons and on recombinant P2X receptors expressed in HEK293 cells or Xenopus laevis oocytes. The effects of PROG were observed and already maximal during the first coapplication with ATP and did not need any preincubation of the cells with PROG, indicating a fast mechanism of action. In DRG neurons, PROG rapidly and reversibly potentiated submaximal but not saturating plateau-like currents evoked by ATP, but had no effect on the currents activated by alpha,beta-methylene ATP, an agonist of homomeric or heteromeric receptors containing P2X1 or P2X3 subunits. In cells expressing homomeric P2X2 receptors, responses to submaximal ATP, were systematically potentiated by PROG in a dose-dependent manner with a threshold between 1 and 10 nM. PROG had no effect on ATP currents carried by homomeric P2X1, P2X3, and P2X4 receptors or by heteromeric P2X1/5 and P2X2/3 receptors. We conclude that PROG selectively potentiates homomeric P2X2 receptors and, in contrast with dehydroepiandrosterone (DHEA), discriminates between homomeric and heteromeric P2X2-containing receptors. This might have important physiological implications since the P2X2 subunit is the most widely distributed P2X subunit in the organism. Moreover, DHEA and PROG might be useful tools to clarify the distribution and the role of native homo- and heteromeric P2X2 receptors.


Assuntos
Neurônios/efeitos dos fármacos , Progesterona/farmacologia , Progestinas/farmacologia , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Biofísica , Células Cultivadas , Desidroepiandrosterona/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Gânglios Espinais/citologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Ratos , Ratos Wistar , Receptores Purinérgicos P2X2 , Transfecção/métodos , Xenopus
20.
Stem Cells Dev ; 17(5): 1005-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18811243

RESUMO

Previous studies described that neurons could be generated in vitro from human umbilical cord blood cells. However, there are few data concerning their origin. Notably, cells generating neurons are not well characterized. The present study deals with the origin of cord blood cells generating neurons and mechanisms allowing the neuronal differentiation. We studied neuronal markers of both total fractions of cord blood and stem/progenitor cord blood cells before and after selections and cultures. We also compared neuronal commitment of cord blood cells to that observed for the neuronal cell line SK-N-BE(2). Before cultures, neuronal markers are found within the total fraction of cord blood cells. In CD133+ stem/progenitor cell fraction only immature neuronal markers are detected. However, CD133+ cells are unable to give rise to neurons in cultures, whereas this is achieved when total fraction of cord blood cells is used. In fact, mature functional neurons can be generated from CD133+ cells only in cell-to-cell close contact with either CD133- fraction or a neurogenic epithelium. Furthermore, since CD133+ fraction is heterogenous, we used several selections to precisely identify the phenotype of cord blood-derived neuronal stem/progenitor cells. Results reveal that only CD34- cells from CD133+ fraction possess neuronal potential. These data show the phenotype of cord blood neuronal stem/progenitor cells and the crucial role of direct cell-to-cell contact to achieve their commitment. Identifying the neuron supporting factors may be beneficial to the use of cord blood neuronal stem/progenitor cells for regenerative medicine.


Assuntos
Antígenos CD34/metabolismo , Antígenos CD/metabolismo , Comunicação Celular , Sangue Fetal/citologia , Glicoproteínas/metabolismo , Neurônios/citologia , Peptídeos/metabolismo , Células-Tronco/citologia , Antígeno AC133 , Diferenciação Celular , Linhagem Celular , Humanos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA