Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Pharmacol ; 98(2): 143-155, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32616523

RESUMO

The two-pore domain potassium channel (K2P-channel) THIK-1 has several predicted protein kinase A (PKA) phosphorylation sites. In trying to elucidate whether THIK-1 is regulated via PKA, we expressed THIK-1 channels in a mammalian cell line (CHO cells) and used the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) as a pharmacological tool to induce activation of PKA. Using the whole-cell patch-clamp recording, we found that THIK-1 currents were inhibited by application of IBMX with an IC50 of 120 µM. Surprisingly, intracellular application of IBMX or of the second messenger cAMP via the patch pipette had no effect on THIK-1 currents. In contrast, extracellular application of IBMX produced a rapid and reversible inhibition of THIK-1. In patch-clamp experiments with outside-out patches, THIK-1 currents were also inhibited by extracellular application of IBMX. Expression of THIK-1 channels in Xenopus oocytes was used to compare wild-type channels with mutated channels. Mutation of the putative PKA phosphorylation sites did not change the inhibitory effect of IBMX on THIK-1 currents. Mutational analysis of all residues of the (extracellular) helical cap of THIK-1 showed that mutation of the arginine residue at position 92, which is in the linker between cap helix 2 and pore helix 1, markedly reduced the inhibitory effect of IBMX. This flexible linker region, which is unique for each K2P-channel subtype, may be a possible target of channel-specific blockers. SIGNIFICANCE STATEMENT: The potassium channel THIK-1 is strongly expressed in the central nervous system. We studied the effect of 3-isobutyl-1-methyl-xanthine (IBMX) on THIK-1 currents. IBMX inhibits breakdown of cAMP and thus activates protein kinase A (PKA). Surprisingly, THIK-1 current was inhibited when IBMX was applied from the extracellular side of the membrane, but not from the intracellular side. Our results suggest that IBMX binds directly to the channel and that the inhibition of THIK-1 current was not related to activation of PKA.


Assuntos
1-Metil-3-Isobutilxantina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Arginina/genética , Sítios de Ligação/efeitos dos fármacos , Células CHO , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mutação , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Xenopus
2.
Pflugers Arch ; 467(5): 867-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791628

RESUMO

Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Animais , Humanos , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Domínios Poros em Tandem/química
3.
J Mol Cell Cardiol ; 81: 71-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655935

RESUMO

TASK-1 channels have emerged as promising drug targets against atrial fibrillation, the most common arrhythmia in the elderly. While TASK-3, the closest relative of TASK-1, was previously not described in cardiac tissue, we found a very prominent expression of TASK-3 in right human auricles. Immunocytochemistry experiments of human right auricular cardiomyocytes showed that TASK-3 is primarily localized at the plasma membrane. Single-channel recordings of right human auricles in the cell-attached mode, using divalent-cation-free solutions, revealed a TASK-1-like channel with a single-channel conductance of about 30pS. While homomeric TASK-3 channels were not found, we observed an intermediate single-channel conductance of about 55pS, possibly reflecting the heteromeric channel formed by TASK-1 and TASK-3. Subsequent experiments with TASK-1/TASK-3 tandem channels or with co-expressed TASK-1 and TASK-3 channels in HEK293 cells or Xenopus oocytes, supported that the 55pS channels observed in right auricles have electrophysiological characteristics of TASK-1/TASK-3 heteromers. In addition, co-expression experiments and single-channel recordings suggest that heteromeric TASK-1/TASK-3 channels have a predominant surface expression and a reduced affinity for TASK-1 blockers. In summary, the evidence for heteromeric TASK-1/TASK-3 channel complexes together with an altered pharmacologic response to TASK-1 blockers in vitro is likely to have further impact for studies isolating ITASK-1 from cardiomyocytes and for the development of drugs specifically targeting TASK-1 in atrial fibrillation treatment.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Benzamidas/farmacologia , Benzenoacetamidas/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Átrios do Coração/citologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Cultura Primária de Células , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Xenopus laevis , ortoaminobenzoatos/farmacologia
4.
Pflugers Arch ; 467(5): 1069-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25539776

RESUMO

We studied the potassium current flowing through TREK-1 channels in rat cardiac ventricular myocytes. We separated the TREK-1 current from other current components by blocking most other channels with a blocker cocktail. We tried to inhibit the TREK-1 current by activating protein kinase A (PKA) with a mixture of forskolin and isobutyl-methylxanthine (IBMX). Activation of PKA blocked an outwardly rectifying current component at membrane potentials positive to -40 mV. At 37 °C, application of forskolin plus IBMX reduced the steady-state outward current measured at positive voltages by about 52 %. Application of the potassium channel blockers quinidine or tetrahexylammonium also reduced the steady-state outward current by about 50 %. Taken together, our results suggest that the increase in temperature from 22 to 37 °C increased the TREK-1 current by a factor of at least 5 and that the average density of the TREK-1 current in rat cardiomyocytes at 37 °C is about 1.5 pA/pF at +30 mV. The contribution of TREK-1 to the action potential was assessed by using a dynamic patch clamp technique. After subtraction of simulated TREK-1 currents, action potential duration at 50 or 90 % repolarisation was increased by about 12 %, indicating that TREK-1 may be functionally important in rat ventricular muscle. During sympathetic stimulation, inhibition of TREK-1 channels via PKA is expected to prolong the action potential primarily in subendocardial myocytes; this may decrease the transmural dispersion of repolarisation and thus may serve to prevent the occurrence of arrhythmias.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Inibidores de Fosfodiesterase/farmacologia , Ratos
5.
Mol Biol Cell ; 25(12): 1877-91, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24743596

RESUMO

The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.


Assuntos
Endocitose , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Endossomos/metabolismo , Feminino , Células HeLa , Humanos , Proteínas do Tecido Nervoso/química , Canais de Potássio de Domínios Poros em Tandem/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Qa-SNARE/química , Xenopus laevis
6.
Pflugers Arch ; 466(8): 1559-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24196565

RESUMO

We have identified a novel splice variant of the human and rat two-pore domain potassium (K2P) channel TREK-1. The splice variant TREK-1e results from skipping of exon 5, which causes a frame shift in exon 6. The frame shift produces a novel C-terminal amino acid sequence and a premature termination of translation, which leads to a loss of transmembrane domains M3 and M4 and of the second pore domain. RT-PCR experiments revealed a preferential expression of TREK-1e in kidney, adrenal gland, and amygdala. TREK-1e was nonfunctional when expressed in Xenopus oocytes. However, both the surface expression and the current density of full-length TREK-1 were reduced by co-expression of TREK-1e. Live cell imaging in COS-7 cells transfected with GFP-tagged TREK-1e showed that this splice variant was retained in the endoplasmic reticulum (ER). Attachment of the C-terminus of TREK-1e to two different reporter proteins (Kir2.1 and CD8) led to a strong reduction in the surface expression of these fusion proteins. Progressive truncation of the C-terminus of TREK-1e in these reporter constructs revealed a critical region (amino acids 198 to 205) responsible for the intracellular retention. Mutagenesis experiments indicated that amino acids I204 and W205 are key residues mediating the ER retention of TREK-1e. Our results suggest that the TREK-1e splice variant may interfere with the vesicular traffic of full-length TREK-1 channels from the ER to the plasma membrane. Thus, TREK-1e might modulate the copy number of functional TREK-1 channels at the cell surface, providing a novel mechanism for fine tuning of TREK-1 currents.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Sequência de Aminoácidos , Animais , Western Blotting , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
7.
Pflugers Arch ; 466(9): 1735-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24297522

RESUMO

THIK-2 belongs to the 'silent' channels of the two-pore-domain potassium channel family. It is highly expressed in many nuclei of the brain but has so far resisted all attempts at functional expression. THIK-2 has a highly conserved 19-amino-acid region in its N terminus (residues 6-24 in the rat orthologue) that is missing in the closely related channel THIK-1. After deletion of this region (THIK-2(Δ6-24) mutant), functional expression of the channel was observed in Xenopus oocytes and in mammalian cell lines. The resulting potassium current showed outward rectification under physiological conditions and slight inward rectification with symmetrical high-K(+) solutions and could be inhibited by application of halothane or quinidine. Another THIK-2 mutant, in which the putative retention/retrieval signal RRR at positions 14-16 was replaced by AAA, produced a similar potassium current. Both mutants showed a distinct localisation to the surface membrane when tagged with green fluorescent protein and expressed in a mammalian cell line, whereas wild-type THIK-2 was mainly localised to the endoplasmic reticulum. These findings suggest that deletion of the retention/retrieval signal RRR enabled transport of THIK-2 channels to the surface membrane. Combining the mutation THIK-2(Δ6-24) with a mutation in the pore cavity (rat THIK-2(I158G)) gave rise to a 12-fold increase in current amplitude, most likely due to an increase in open probability. In conclusion, the characteristics of THIK-2 channels can be analysed in heterologous expression systems by using trafficking and/or gating mutants. The possible mechanisms that enable THIK-2 expression at the surface membrane in vivo remain to be determined.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transporte Proteico/fisiologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HeLa , Humanos , Oócitos , Técnicas de Patch-Clamp , Ratos , Transfecção , Xenopus laevis
8.
Chem Biol ; 20(4): 583-93, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601647

RESUMO

Small-molecule stabilization of protein-protein interactions is an emerging field in chemical biology. We show how fusicoccanes, originally identified as fungal toxins acting on plants, promote the interaction of 14-3-3 proteins with the human potassium channel TASK-3 and present a semisynthetic fusicoccane derivative (FC-THF) that targets the 14-3-3 recognition motif (mode 3) in TASK-3. In the presence of FC-THF, the binding of 14-3-3 proteins to TASK-3 was increased 19-fold and protein crystallography provided the atomic details of the effects of FC-THF on this interaction. We also tested the functional effects of FC-THF on TASK channels heterologously expressed in Xenopus oocytes. Incubation with 10 µM FC-THF was found to promote the transport of TASK channels to the cell membrane, leading to a significantly higher density of channels at the surface membrane and increased potassium current.


Assuntos
Diterpenos/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Cinética , Conformação Molecular , Dados de Sequência Molecular , Oócitos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
9.
Cardiovasc Res ; 97(1): 97-105, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22977011

RESUMO

AIMS: The two-pore-domain potassium channel TASK-1 is robustly inhibited by the activation of receptors coupled to the Gα(q) subgroup of G-proteins, but the signal transduction pathway is still unclear. We have studied the mechanisms by which endothelin receptors inhibit the current carried by TASK-1 channels (I(TASK)) in cardiomyocytes. METHODS AND RESULTS: Patch-clamp measurements were carried out in isolated rat cardiomyocytes. I(TASK) was identified by extracellular acidification to pH 6.0 and by the application of the TASK-1 blockers A293 and A1899. Endothelin-1 completely inhibited I(TASK) with an EC(50) of <10 nM; this effect was mainly mediated by endothelin-A receptors. Application of 20 nM endothelin-1 caused a significant increase in action potential duration under control conditions; this was significantly reduced after pre-incubation of the cardiomyocytes with 200 nM A1899. The inhibition of I(TASK) by endothelin-1 was not affected by inhibitors of protein kinase C or rho kinase, but was strongly reduced by U73122, an inhibitor of phospholipase C (PLC). The ability of endothelin-1 to activate PLC-mediated signalling pathways was examined in mammalian cells transfected with TASK-1 and the endothelin-A receptor using patch-clamp measurements and total internal reflection microscopy. U73122 prevented the inhibition of I(TASK) by endothelin-1 and blocked PLC-mediated signalling, as verified with a fluorescent probe for phosphatidylinositol-(4,5)-bisphosphate hydrolysis. CONCLUSION: Our results show that I(TASK) in rat cardiomyocytes is controlled by endothelin-1 and suggest that the inhibition of TASK-1 via endothelin receptors is mediated by the activation of PLC. The prolongation of the action potential observed with 20 nM endothelin-1 was mainly due to the inhibition of I(TASK).


Assuntos
Endotelina-1/farmacologia , Ativação do Canal Iônico , Miócitos Cardíacos/enzimologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Potenciais de Ação , Animais , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Microscopia de Fluorescência , Microscopia de Interferência , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fosfolipases Tipo C/antagonistas & inibidores
10.
Cell Physiol Biochem ; 30(5): 1227-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23075627

RESUMO

BACKGROUND/AIMS: The D553N mutation located in the C-linker of the cardiac pacemaker channel HCN4 is thought to cause sino-atrial dysfunction via a pronounced dominant-negative trafficking defect. Since HCN4 mutations usually have a minor defect in channel gating, it was our aim to further characterize the disease causing mechanism of D553N. METHODS: Fluorescence microscopy, FACS, TEVC and patch-clamp recordings were performed to characterize D553N. RESULTS: Surprisingly, we found that D553N channels reach the plasma membrane and have no apparent trafficking defect. Co-expression of D553N with HCN4 also revealed no dominant-negative effect on wild-type channels. Consistent with the normal cell surface expression of D553N, it was possible to extensively characterize D553N mutants in Xenopus oocytes and mammalian cells. D553N channels generate currents with reduced amplitude, while the kinetics of activation and deactivation are not altered. While the regulation of D553N by tyrosine kinases is normal, we observed a change in the cAMP regulation which however cannot account for the strong loss-of-function of the mutant. CONCLUSION: The pronounced current reduction and the regular surface expression indicate a major gating defect of the C-linker gate. We hypothesize that the D553N mutation stabilizes a previously reported salt bridge important for the gating of the channel.


Assuntos
Bradicardia/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Canais de Potássio/genética , Canais de Potássio/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Proteínas Musculares/química , Canais de Potássio/química , Xenopus
11.
Cell Physiol Biochem ; 28(4): 613-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22178873

RESUMO

BACKGROUND/AIMS: Atrial fibrillation is the most common arrhythmia in the elderly, and potassium channels with atrium-specific expression have been discussed as targets to treat atrial fibrillation. Our aim was to characterize TASK-1 channels in human heart and to functionally describe the role of the atrial whole cell current I(TASK-1). METHODS AND RESULTS: Using quantitative PCR, we show that TASK-1 is predominantly expressed in the atria, auricles and atrio-ventricular node of the human heart. Single channel recordings show the functional expression of TASK-1 in right human auricles. In addition, we describe for the first time the whole cell current carried by TASK-1 channels (I(TASK-1)) in human atrial tissue. We show that I(TASK-1) contributes to the sustained outward current I(Ksus) and that I(TASK-1) is a major component of the background conductance in human atrial cardiomyocytes. Using patch clamp recordings and mathematical modeling of action potentials, we demonstrate that modulation of I(TASK-1) can alter human atrial action potential duration. CONCLUSION: Due to the lack of ventricular expression and the ability to alter human atrial action potential duration, TASK-1 might be a drug target for the treatment of atrial fibrillation.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Idoso , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Células Cultivadas , Eletrocardiografia , Feminino , Átrios do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , Xenopus
12.
Cell Physiol Biochem ; 28(4): 663-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22178878

RESUMO

BACKGROUND/AIMS: ROMK channels mediate potassium secretion and regulate NaCl reabsorption in the kidney. The aim was to study the functional implications of the interaction between ROMK2 (Kir1.1b) and two glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase-α, which were identified as potential regulatory subunits of the channel complex. METHODS: We performed a membrane yeast-two-hybrid screen of a human kidney cDNA library with ROMK2 as a bait. Interaction of ROMK2 with GAPDH and enolase was verified using GST pull-down, co-immunoprecipitation, immunohistochemistry and co-expression in Xenopus oocytes. RESULTS: Confocal imaging showed co-localisation of enolase and GAPDH with ROMK2 in the apical membrane of the renal epithelial cells of the thick ascending limb. Over-expression of GAPDH or enolase-α in Xenopus oocytes markedly reduced the amplitude of ROMK2 currents but did not affect the surface expression of the channels. Co-expression of the glycolytically inactive GAPDH mutant C149G did not have any effect on ROMK2 current amplitude. CONCLUSION: Our results suggest that the glycolytic enzymes GAPDH and enolase are part of the ROMK2 channel supramolecular complex and may serve to couple salt reabsorption in the thick ascending limb of the loop of Henle to the metabolic status of the renal epithelial cells.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fosfopiruvato Hidratase/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Substituição de Aminoácidos , Animais , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Células HEK293 , Humanos , Imunoprecipitação , Rim/enzimologia , Rim/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis/genética
13.
EMBO J ; 29(13): 2101-13, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20461057

RESUMO

The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvbeta subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Edição de RNA , Tetraetilamônio/farmacologia , Animais , Ácido Araquidônico/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Ratos , Xenopus laevis
14.
J Physiol ; 587(Pt 5): 929-52, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19139046

RESUMO

The two-pore-domain potassium channels TASK-1 (KCNK3) and TASK-3 (KCNK9) modulate the electrical activity of neurons and many other cell types. We expressed TASK-1, TASK-3 and related reporter constructs in Xenopus oocytes, mammalian cell lines and various yeast strains to study the mechanisms controlling their transport to the surface membrane and the role of 14-3-3 proteins. We measured potassium currents with the voltage-clamp technique and fused N- and C-terminal fragments of the channels to various reporter proteins to study changes in subcellular localisation and surface expression. Mutational analysis showed that binding of 14-3-3 proteins to the extreme C-terminus of TASK-1 and TASK-3 masks a tri-basic motif, KRR, which differs in several important aspects from canonical arginine-based (RxR) or lysine-based (KKxx) retention signals. Pulldown experiments with GST fusion proteins showed that the KRR motif in the C-terminus of TASK-3 channels was able to bind to COPI coatomer. Disabling the binding of 14-3-3, which exposes the KRR motif, caused localisation of the GFP-tagged channel protein mainly to the Golgi complex. TASK-1 and TASK-3 also possess a di-basic N-terminal retention signal, KR, whose function was found to be independent of the binding of 14-3-3. Suppression of channel surface expression with dominant-negative channel mutants revealed that interaction with 14-3-3 has no significant effect on the dimeric assembly of the channels. Our results give a comprehensive description of the mechanisms by which 14-3-3 proteins, together with N- and C-terminal sorting signals, control the intracellular traffic of TASK-1 and TASK-3.


Assuntos
Proteínas 14-3-3/fisiologia , Espaço Intracelular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Feminino , Humanos , Espaço Intracelular/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Oócitos/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico/genética , Xenopus laevis
15.
J Biol Chem ; 284(7): 4695-704, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19074135

RESUMO

The voltage-activated K(+) channel subunit Kv2.1 can form heterotetramers with members of the Kv6 subfamily, generating channels with biophysical properties different from homomeric Kv2.1 channels. The N-terminal tetramerization domain (T1) has been shown previously to play a role in Kv channel assembly, but the mechanisms controlling specific heteromeric assembly are still unclear. In Kv6.x channels the histidine residue of the zinc ion-coordinating C3H1 motif of Kv2.1 is replaced by arginine or valine. Using a yeast two-hybrid assay, we found that substitution of the corresponding histidine 105 in Kv2.1 by valine (H105V) or arginine (H105R) disrupted the interaction of the T1 domain of Kv2.1 with the T1 domains of both Kv6.3 and Kv6.4, whereas interaction of the T1 domain of Kv2.1 with itself was unaffected by this mutation. Using fluorescence resonance energy transfer (FRET), interaction could be detected between the subunits Kv2.1/Kv2.1, Kv2.1/Kv6.3, and Kv2.1/Kv6.4. Reduced FRET signals were obtained after co-expression of Kv2.1(H105V) or Kv2.1(H105R) with Kv6.3 or Kv6.4. Wild-type Kv2.1 but not Kv2.1(H105V) could be co-immunoprecipitated with Kv6.4. Co-expression of dominant-negative mutants of Kv6.3 reduced the current produced Kv2.1, but not of Kv2.1(H105R) mutants. Co-expression of Kv6.3 or Kv6.4 with wt Kv2.1 but not with Kv2.1(H105V) or Kv2.1(H105R) changed the voltage dependence of activation of the channels. Our results suggest that His-105 in the T1 domain of Kv2.1 is required for functional heteromerization with members of the Kv6 subfamily. We conclude from our findings that Kv2.1 and Kv6.x subunits have complementary T1 domains that control selective heteromerization.


Assuntos
Mutação de Sentido Incorreto , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio Shab/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Histidina/genética , Histidina/metabolismo , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Potássio Shab/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Traffic ; 8(8): 1093-100, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17547699

RESUMO

We have characterized a sequence motif, EDE, in the proximal C-terminus of the acid-sensitive potassium channel TASK-3. Human TASK-3 channels were expressed in Xenopus oocytes, and the density of the channels at the surface membrane was studied with two complementary techniques: a luminometric surface expression assay of hemagglutinin epitope-tagged TASK-3 channels and voltage-clamp measurements of the acid-sensitive potassium current. Both approaches showed that mutation of the two glutamate residues of the EDE motif to alanine (ADA mutant) markedly reduced the transport of TASK-3 channels to the cell surface. Mutation of the central aspartate of the EDE motif had no effect on surface expression. The functional role of the EDE motif was further characterized in chimaeric constructs consisting of truncated Kir2.1 channels to which the C-terminus of TASK-3 was attached. In these constructs, too, replacement of the EDE motif by ADA strongly reduced surface expression. Live-cell imaging of enhanced green fluorescent protein-tagged channels expressed in COS-7 cells showed that 24 h after transfection wild-type TASK-3 was mainly localized to the cell surface whereas the ADA mutant was largely retained in the endoplasmic reticulum (ER). Mutation of a second di-acidic motif in the C-terminus of TASK-3 (DAE) had no effect on surface expression. Coexpression of TASK-3 with a GTP-restricted mutant of the coat recruitment GTPase Sar1 (Sar1H79G) resulted in ER retention of the channel. Our data suggest that the di-acidic motif, EDE, in human TASK-3 is a major determinant of the rate of ER export and is required for efficient surface expression of the channel.


Assuntos
Aminoácidos Acídicos/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos Acídicos/fisiologia , Animais , Células COS , Bovinos , Chlorocebus aethiops , Cães , Retículo Endoplasmático/metabolismo , Cobaias , Humanos , Camundongos , Dados de Sequência Molecular , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Ratos , Xenopus laevis
17.
Cardiovasc Res ; 75(1): 59-68, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17389142

RESUMO

OBJECTIVE: The outward current flowing through the two-pore domain acid-sensitive potassium channel TASK-1 (I(TASK)) and its inhibition via alpha1-adrenergic receptors was studied in rat ventricular cardiomyocytes. METHODS: Quantitative RT-PCR experiments were carried out with mRNA from rat heart. Patch-clamp recordings were performed in isolated rat cardiomyocytes. TASK-1 and other K+ channels were expressed in Xenopus oocytes to study the pharmacological properties of a new TASK-1 channel blocker, A293. RESULTS: TASK-1 channels were found to be strongly expressed in rat heart. Analysis of the sensitivity of various K+ channels to A293 in Xenopus oocytes showed that at low concentrations A293 was a selective blocker of TASK-1 channels. I(TASK) in rat cardiomyocytes was dissected by application of A293 and by extracellular acidification to pH 6.0; it had an amplitude of approximately 0.30 pA/pF at +30 mV. Application of 200 nM A293 increased action potential duration (APD(50)) by 31+/-3% at a stimulation rate of 4 Hz. The plausibility of the effects of A293 on APD50 was checked with a mathematical action potential model. Application of the alpha1-adrenergic agonist methoxamine inhibited I(TASK) in Xenopus oocytes co-injected with cRNA for TASK-1 and alpha1A-receptors. In cardiomyocytes, methoxamine inhibited an outward current with characteristics similar to I(TASK). This effect was abolished in the presence of the alpha1A-antagonist 5-methyl-urapidil. CONCLUSIONS: Our results suggest that in rat cardiomyocytes I(TASK) makes a substantial contribution to the outward current flowing in the plateau range of potentials and that this current component can be inhibited via alpha1A-adrenergic receptors.


Assuntos
Simulação por Computador , Modelos Cardiovasculares , Miocárdio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Concentração de Íons de Hidrogênio , Metoxamina/farmacologia , Proteínas do Tecido Nervoso , Oócitos/metabolismo , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , RNA Mensageiro/análise , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos , Xenopus laevis
18.
Traffic ; 7(2): 168-81, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420525

RESUMO

The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous expression systems, deletion of the p11-interacting domain enhanced surface expression of TASK-1. Attachment of the p11-interacting domain to the cytosolic tail of the reporter protein CD8 caused retention/retrieval of the construct in the endoplasmic reticulum (ER). Attachment of the last 36 amino acids of p11 to CD8 also caused ER localization, which was abolished by removal or mutation of a putative retention motif (H/K)xKxxx, at the C-terminal end of p11. Imaging of EGFP-tagged TASK-1 channels in COS cells suggested that wild-type TASK-1 was largely retained in the ER. Knockdown of p11 with siRNA enhanced trafficking of TASK-1 to the surface membrane. Our results suggest that binding of p11 to TASK-1 retards the surface expression of the channel, most likely by virtue of a di-lysine retention signal at the C-terminus of p11. Thus, the cytosolic protein p11 may represent a 'retention factor' that causes localization of the channel to the ER.


Assuntos
Anexina A2/metabolismo , Retículo Endoplasmático/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas S100/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Anexina A2/química , Anexina A2/genética , Sítios de Ligação/genética , Antígenos CD8/química , Antígenos CD8/genética , Antígenos CD8/metabolismo , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Técnicas In Vitro , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso , Oócitos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas S100/química , Proteínas S100/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Xenopus
19.
J Physiol ; 545(1): 13-26, 2002 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-12433946

RESUMO

The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3zeta cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3zeta (but not TASK-1DeltaC5 and 14-3-3zeta) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be co-immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Proteínas 14-3-3 , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos/genética , Animais , Transporte Biológico/fisiologia , Células COS , Linhagem Celular/fisiologia , Membrana Celular/metabolismo , Condutividade Elétrica , Feminino , Deleção de Genes , Humanos , Dados de Sequência Molecular , Mutação/fisiologia , Oócitos/fisiologia , Fragmentos de Peptídeos/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Xenopus
20.
Proc Natl Acad Sci U S A ; 99(11): 7774-9, 2002 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12032359

RESUMO

Andersen's syndrome, an autosomal dominant disorder related to mutations of the potassium channel Kir2.1, is characterized by cardiac arrhythmias, periodic paralysis, and dysmorphic bone structure. The aim of our study was to find out whether heteromerization of Kir2.1 channels with wild-type Kir2.2 and Kir2.3 channels contributes to the phenotype of Andersen's syndrome. The following results show that Kir2.x channels can form functional heteromers: (i) HEK293 cells transfected with Kir2.x-Kir2.y concatemers expressed inwardly rectifying K(+) channels with a conductance of 28-30 pS. (ii) Expression of Kir2.x-Kir2.y concatemers in Xenopus oocytes produced inwardly rectifying, Ba(2+) sensitive currents. (iii) When Kir2.1 and Kir2.2 channels were coexpressed in Xenopus oocytes the IC(50) for Ba(2+) block of the inward rectifier current differed substantially from the value expected for independent expression of homomeric channels. (iv) Coexpression of nonfunctional Kir2.x constructs, in which the GYG region of the pore region was replaced by AAA, with wild-type Kir2.x channels produced both homomeric and heteromeric dominant-negative effects. (v) Kir2.1 and Kir2.3 channels could be coimmunoprecipitated in membrane extracts from isolated guinea pig cardiomyocytes. (vi) Yeast two-hybrid analysis showed interaction between the N- and C-terminal intracellular domains of different Kir2.x subunits. Coexpression of Kir2.1 mutants related to Andersen's syndrome with wild-type Kir2.x channels showed a dominant negative effect, the extent of which varied between different mutants. Our results suggest that differential tetramerization of the mutant allele of Kir2.1 with wild-type Kir2.1, Kir2.2, and Kir2.3 channels represents the molecular basis of the extraordinary pleiotropy of Andersen's syndrome.


Assuntos
Síndrome do QT Longo/genética , Paralisias Periódicas Familiares/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Substituição de Aminoácidos , Animais , Linhagem Celular , Cobaias , Humanos , Modelos Moleculares , Mutagênese Insercional , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/química , Conformação Proteica , Subunidades Proteicas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA