Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491565

RESUMO

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Phys Rev E ; 109(2-2): 025203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491694

RESUMO

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.

3.
Phys Rev Lett ; 132(6): 065103, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394600

RESUMO

Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.

4.
Phys Rev E ; 108(5): L053203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115512

RESUMO

Inertial confinement fusion ignition requires high inflight shell velocity, good energy coupling between the hotspot and shell, and high areal density at peak compression. Three-dimensional asymmetries caused by imperfections in the drive symmetry or target can grow and damage the coupling and confinement. Recent high-yield experiments have shown that low-mode asymmetries are a key degradation mechanism and contribute to variability. We show the experimental signatures and impacts of asymmetry change with increasing implosion yield given the same initial cause. This letter has implications for improving robustness to a key degradation in ignition experiments.

5.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862497

RESUMO

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

6.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625041

RESUMO

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

7.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461449

RESUMO

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

8.
Rev Sci Instrum ; 93(11): 113550, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461502

RESUMO

The analysis of the National Ignition Facility (NIF) neutron time-of-flight (nToF) detectors uses a forward-fit routine that depends critically on the instrument response functions (IRFs) of the diagnostics. The details of the IRFs used can have large impacts on measurements such as ion temperature and down-scattered ratio (DSR). Here, we report on the recent steps taken to construct and validate nToF IRFs at the NIF to an increased degree of accuracy, as well as remove the need for fixed DSR baseline offsets. The IRF is treated in two parts: a "core," measured experimentally with an x-ray impulse source, and a "tail" that occurs later in time and has limited experimental data. The tail region is calibrated with the data from indirect drive exploding pusher shots, which have little neutron scattering and are traditionally assumed to have zero DSR. Using analytic modeling estimates, the non-zero DSR for these shots is estimated. The impact of varying IRF tail components on DSR is investigated with a systematic parameter study, and good agreement is found with the non-zero DSR estimates. These approaches will be used to improve the precision and uncertainty of NIF nToF DSR measurements.

9.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461534

RESUMO

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

10.
Rev Sci Instrum ; 93(10): 103543, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319345

RESUMO

Inertial confinement fusion experiments at both the National Ignition Facility (NIF) and the Laboratory for Laser Energetics OMEGA laser facility currently utilize Cherenkov detectors, with fused silica as the Cherenkov medium. At the NIF, the Quartz Cherenkov Detectors improve the precision of neutron time-of-flight measurements; and at OMEGA, the Diagnostic for Areal Density provides measurements of capsule shell areal densities. An inherent property of fused silica is the radiator's relatively low energy threshold for Cherenkov photon production (Ethreshold < 1 MeV), making it advantageous over gas-based Cherenkov detectors for experiments requiring low-energy γ detection. The Vacuum Cherenkov Detector (VCD) has been specifically designed for efficient detection of low energy γ's. Its primary use is in implosion experiments, which will study reactions relevant to stellar and big-bang nucleosynthesis, such as T(4He,γ)7Li, 4He(3He,γ)7Be, and 12C(p,γ)13N. The VCD is compatible with LLE's standard Ten-Inch Manipulator diagnostic insertion module. This work will outline the design and characterization of the VCD as well as provide results from recent experiments conducted at the OMEGA laser facility.

11.
Rev Sci Instrum ; 93(8): 083520, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050061

RESUMO

The ion temperature varying during inertial confinement fusion implosions changes the amount of Doppler broadening of the fusion products, creating subtle changes in the fusion neutron pulse as it moves away from the implosion. A diagnostic design to try to measure these subtle effects is introduced-leveraging the fast time resolution of gas Cherenkov detectors along with a multi-puck array that converts a small amount of the neutron pulse into gamma-rays, one can measure multiple snapshots of the neutron pulse at intermediate distances. Precise measurements of the propagating neutron pulse, specifically the variation in the peak location and the skew, could be used to infer time-evolved ion temperature evolved during peak compression.

12.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638294

RESUMO

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

13.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

14.
Phys Rev E ; 104(1): L013201, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412205

RESUMO

A series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.5. This is an experimental confirmation of the long-standing conjecture that plasma shocks couple energy directly proportional to the species mass in multi-ion plasmas. The apparent temperature ratio trend with equilibration time matches expected thermal equilibration described by hydrodynamic theory. This indicates that deuterium and tritium ions have different energy distributions for the time period surrounding shock convergence in ignition-relevant ICF implosions.

15.
Rev Sci Instrum ; 92(4): 043512, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243456

RESUMO

Nuclear diagnostics provide measurements of inertial confinement fusion implosions used as metrics of performance for the shot. The interpretation of these measurements for shots with low mode asymmetries requires a way of combining the data to produce a "sky map" where the individual line-of-sight values are used to interpolate to other positions in the sky. These interpolations can provide information regarding the orientation of the low mode asymmetries. We describe the interpolation method, associated uncertainties, and correlations between different metrics, e.g., Tion, down scatter ratio, and hot-spot velocity direction. This work is also related to recently reported studies [H. G. Rinderknecht et al., Phys. Rev. Lett. 124, 145002 (2020) and K. M. Woo et al., Phys. Plasmas 27, 062702 (2020)] of low mode asymmetries. We report an analysis that makes use of a newly commissioned line of sight, a scheme for incorporating multiple neutron spectrum measurement types, and recent work on the sources of implosion asymmetry to provide a more complete picture of implosion performance.

16.
Rev Sci Instrum ; 92(5): 053543, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243308

RESUMO

Neutron-yield diagnostics at the NIF have been upgraded to include 48 detectors placed around the NIF target chamber to assess the DT-neutron-yield isotropy for inertial confinement fusion experiments. Real-time neutron-activation detectors are used to understand yield asymmetries due to Doppler shifts in the neutron energy attributed to hotspot motion, variations in the fuel and ablator areal densities, and other physics effects. In order to isolate target physics effects, we must understand the contribution due to neutron scattering associated with the different hardware configurations used for each experiment. We present results from several calibration experiments that demonstrate the ability to achieve our goal of 1% or better precision in determining the yield isotropy.

17.
Rev Sci Instrum ; 92(5): 053526, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243327

RESUMO

Recent inertial confinement fusion measurements have highlighted the importance of 3D asymmetry effects on implosion performance. One prominent example is the bulk drift velocity of the deuterium-tritium plasma undergoing fusion ("hotspot"), vHS. Upgrades to the National Ignition Facility neutron time-of-flight diagnostics now provide vHS to better than 1 part in 104 and enable cross correlations with other measurements. This work presents the impact of vHS on the neutron yield, downscatter ratio, apparent ion temperature, electron temperature, and 2D x-ray emission. The necessary improvements to diagnostic suites to take these measurements are also detailed. The benefits of using cross-diagnostic analysis to test hotspot models and theory are discussed, and cross-shot trends are shown.

18.
Rev Sci Instrum ; 92(4): 043555, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243390

RESUMO

The time-resolved measurement of neutrons emitted from nuclear implosions at inertial confinement fusion facilities is used to characterize the fusing plasma. Several significant quantities are routinely measured by neutron time-of-flight (nToF) detectors in these experiments. Current nToF detectors use scintillators as well as solid-state Cherenkov radiators. The latter has an inherently faster time response and can provide a co-registered γ-ray measurement as well as improved precision in the bulk hot-spot velocity. This work discusses a nToF ellipsoidal detector that also utilizes a solid-state Cherenkov radiator. The detector has the potential to achieve a fast instrument response function allowing for characterization of the γ-ray burn history as well as the ability to field the detector closer to the fusion source. Proof-of-concept testing of the nToF ellipsoidal detector has been conducted at the National Ignition Facility using commercial optics. A time-resolved neutron signal has been measured from the diagnostic. Preliminary simulations corroborate the results.

19.
Rev Sci Instrum ; 92(4): 043527, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243407

RESUMO

The Real Time Nuclear Activation Detector (RTNAD) array at NIF measures the distribution of 14 MeV neutrons emitted by deuterium-tritium (DT) fueled inertial confinement fusion implosions. The uniformity of the neutron distribution is an important indication of implosion symmetry and DT shell integrity. The array consists of 48 LaBr3(Ce) crystal gamma-ray spectrometers mounted outside the NIF target chamber, which continuously monitor the slow decay of the 909 keV gamma-ray line from activated 89Zr located in Zr cups surrounding each crystal. The measured decay rate dramatically increases during a DT implosion in proportion to the number of 14 MeV neutrons striking each Zr cup. The neutrons produce activated 89Zr through an (n, 2n) reaction on 90Zr, which is insensitive to low energy neutrons. The neutron flux along the detector line-of-sight at shot time is determined by extrapolating the fitted 909 keV decay curve back to shot time. Automatic analysis algorithms were developed to handle the non-stop data stream. The large number of detectors and the high statistical accuracy of the array enable the spherical harmonic modes of the neutron angular distribution to be measured up to L ≤ 4 to provide a better understanding of implosion dynamics. In addition, these data combined with measurements of the down-scattered neutrons can be used to derive fuel areal density distributions. This paper will describe the RTNAD hardware and analysis procedures.

20.
Rev Sci Instrum ; 92(2): 023516, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648072

RESUMO

Measurement of the neutron spectrum from inertial confinement fusion implosions is one of the primary diagnostics of implosion performance. Analysis of the spectrum gives access to quantities such as neutron yield, hot-spot velocity, apparent ion temperature, and compressed fuel ρr through measurement of the down-scatter ratio. On the National Ignition Facility, the neutron time-of-flight suite has been upgraded to include five independent, collimated lines of sight, each comprising a high dynamic range bibenzyl/diphenylacetylene-stilbene scintillator [R. Hatarik et al., Plasma Fusion Res. 9, 4404104 (2014)] and high-speed fused silica Cherenkov detectors [A. S. Moore et al., Rev. Sci. Instrum. 89, 10I120 (2018)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA