Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(39): 15547-15556, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31490678

RESUMO

Photostability is considered a key asset for photosensitizers (PS) used in medical applications as well as for those used in energy conversion devices. In light-mediated medical treatments, which are based on PS-induced harm to diseased tissues, the photoinduced cycle of singlet oxygen generation has always been considered to correlate with PS efficiency. However, recent evidence points to the fundamental role of contact-dependent reactions, which usually cause PS photobleaching. Therefore, it seems reasonable to challenge the paradigm of photostability versus PS efficiency in medical applications. We have prepared a series of Mg(II) porphyrazines (MgPzs) having similar singlet oxygen quantum yields and side groups with different electron-withdrawing strengths that fine-tune their redox properties. A detailed investigation of the photobleaching mechanism of these porphyrazines revealed that it is independent of singlet oxygen, occurring mainly via photoinduced electron abstraction of surrounding electron rich molecules (solvents or lipids), as revealed by the formation of an air-stable radical anion intermediate. When incorporated into phospholipid membranes, photobleaching of MgPzs correlates with the degree of lipid unsaturation, indicating that it is caused by an electron abstraction from the lipid double bond. Interestingly, upon comparing the efficiency of membrane photodamage between two of these MgPzs (with the highest and the lowest photobleaching efficiencies), we found that the higher the rate of PS photobleaching the faster the leakage induced in the membranes. Our results therefore indicate that photobleaching is a necessary step toward inflicting irreversible biological damage. We propose that the design of more efficient PS for medical applications should contemplate contact-dependent reactions as well as strategies for PS regeneration.

2.
Photochem Photobiol ; 95(1): 176-182, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978920

RESUMO

During the maturation of red wines, the anthocyanins of grapes are transformed into pyranoanthocyanins, which possess a pyranoflavylium cation as their basic chromophore. Photophysical properties of the singlet and triplet excited states of a series of synthetic pyranoflavylium cations were determined at room temperature in acetonitrile solution acidified with 0.10 mol dm-3 trifluoroacetic acid (TFA, to inhibit competitive excited state proton transfer) and at 77 K in a rigid TFA-acidified isopropanol glass. In solution, the triplet states of these pyranoflavylium cations are efficiently quenched by molecular oxygen, resulting in sensitized formation of singlet oxygen, as confirmed by direct detection of the triplet-state decay by laser flash photolysis and of singlet oxygen monomol emission in the near infrared. The strong visible light absorption, the relatively small singlet-triplet energy differences, the excited state redox potentials and the reasonably long lifetimes of pyranoflavylium triplet states in the absence of molecular oxygen suggest that they might be useful as triplet sensitizers and/or as cationic redox initiators in polar aprotic solvents like acetonitrile.

3.
Photodiagnosis Photodyn Ther ; 14: 204-10, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26987416

RESUMO

BACKGROUND: Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. METHODS: A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. RESULTS: Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. CONCLUSIONS: This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Oxigênio Singlete/análise , Administração Intravenosa , Administração Tópica , Animais , Cinética , Medições Luminescentes , Camundongos , Camundongos Nus , Modelos Animais , Fármacos Fotossensibilizantes/uso terapêutico , Razão Sinal-Ruído , Oxigênio Singlete/química
4.
J Biomed Opt ; 18(11): 115001, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24194061

RESUMO

This is the first study showing that singlet oxygen kinetics of topically applied photosensitizers coincides with the microarchitecture of skin, e.g., fissures and hair follicles. The kinetics indicate a chemical interaction of singlet oxygen with the skin, which allows differentiating between residual crème, e.g., in the follicular orifice, and photosensitizer penetrated into the skin. We show the feasibility of an easy-to-use fiber optic application providing the opportunity for in situ investigation, as well as a setup with focused optics for high-resolution two-dimensional scanning of singlet oxygen luminescence kinetics in skin samples. The results show that time-resolved singlet oxygen luminescence detection in tissue is a desirable tool for medical therapy, diagnostics, and evaluation of singlet oxygen interaction with biological environments.


Assuntos
Epiderme/química , Medições Luminescentes/métodos , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/metabolismo , Animais , Orelha/fisiologia , Epiderme/metabolismo , Cinética , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/análise , Oxigênio Singlete/química , Espectroscopia de Luz Próxima ao Infravermelho , Suínos
5.
J Biomed Opt ; 17(11): 115005, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214172

RESUMO

Singlet oxygen plays a crucial role in photo-dermatology and photodynamic therapy (PDT) of cancer. Its direct observation by measuring the phosphorescence at 1270 nm, however, is still challenging due to the very low emission probability. It is especially challenging for the time-resolved detection of singlet oxygen kinetics in vivo which is of special interest for biomedical applications. Photosensitized generation of singlet oxygen, in pig ear skin as model for human skin, is investigated here. Two photosensitizers (PS) were topically applied to the pig ear skin and examined in a comparative study, which include the amphiphilic pheophorbide-a and the highly hydrophobic perfluoroalkylated zinc phthalocyanine (F64PcZn). Fluorescence microscopy indicates the exclusive accumulation of pheophorbide-a in the stratum corneum, while F64PcZn can also accumulate in deeper layers of the epidermis of the pig ear skin. The kinetics obtained with phosphorescence measurements show the singlet oxygen interaction with the PS microenvironment. Different generation sites of singlet oxygen correlate with the luminescence kinetics. The results show that singlet oxygen luminescence detection can be used as a diagnostic tool, not only for research, but also during treatment. The detection methodology is suitable for the monitoring of chemical quenchers' oxidation as well as saturation at singlet oxygen concentration levels relevant to PDT treatment protocols.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/análise , Animais , Clorofila/análogos & derivados , Clorofila/farmacologia , Humanos , Indóis/farmacologia , Isoindóis , Medições Luminescentes , Microscopia de Fluorescência por Excitação Multifotônica , Fotólise , Pele/química , Pele/efeitos dos fármacos , Suínos
6.
J Photochem Photobiol B ; 98(3): 173-9, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20117016

RESUMO

The kinetics of chemical singlet oxygen quencher consumption inside living cells during low dose illumination was revealed via time resolved singlet oxygen luminescence detection. Deviations of the measured data from the common theoretical model for (1)O(2) kinetics forced the authors to consider a one-dimensional diffusion model for description of the kinetics of singlet oxygen generated by membrane localized photosensitizers. Our observations reconcile seemingly contradictory reports presenting different values for the efficiency of singlet oxygen interaction with cells.


Assuntos
Lipossomos/química , Lipossomos/efeitos da radiação , Modelos Biológicos , Modelos Químicos , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Simulação por Computador , Humanos , Células Jurkat , Cinética , Luz , Fármacos Fotossensibilizantes/administração & dosagem , Oxigênio Singlete/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA