Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(10): 102955, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572621

RESUMO

The objective of the present study was to determine the effects of muramidase (MUR) supplemented to diets formulated with different fiber sources (inert or fermentable) on the growth performance and intestinal parameters of broiler chickens raised under different coccidiosis management programs. A total of 2,208 male Ross 308 broilers were housed in 96 floor pens and distributed into a 2 × 3 × 2 factorial arrangement in a completely randomized block design with 2 sources of fiber (inert or fermentable fiber), 3 coccidiosis management programs (none, vaccine, or Salinomycin), and with or without supplementation of MUR at 35,000 LSU(F)/kg of diet. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were calculated for each feeding phase (d 0-14, d 14-28, d 28-36) and from d 0 to 36. On d 17 and d 31, samples were taken to analyze several parameters. The experimental data were analyzed with 3-way ANOVA considering the main effect of fiber source, coccidiosis program, inclusion of MUR, and their interactions using JMP 16.2. 16S rDNA sequencing of the ileal and cecal content was carried out to analyze the diversity, composition, and predictive function of the microbiota. From d 0 to 36, BWG increased (P = 0.05) by 2.5% in birds supplemented with Salinomycin (P = 0.04), and by 2.2% with MUR supplementation (P = 0.02). Salinomycin and MUR improved FCR (P < 0.0001) when compared to nonsupplemented birds. The supplementation of MUR, regardless of the coccidiosis management program, reduced the intestinal viscosity (P = 0.03). On d 31, the highest blood concentration of carotenoids was observed in chickens fed diets supplemented with Salinomycin. MUR led to significant changes in the diversity, composition, and predictive function of the ileal microbiota, mainly on d 31. The results observed herein further explain the positive effects of MUR on the growth performance of broiler chickens.


Assuntos
Galinhas , Coccidiose , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Coccidiose/prevenção & controle , Coccidiose/veterinária , Dieta/veterinária , Suplementos Nutricionais , Muramidase/farmacologia
2.
Mar Biotechnol (NY) ; 23(4): 653-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417678

RESUMO

A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.


Assuntos
Antioxidantes/metabolismo , Salmo salar/metabolismo , Animais , Dieta/veterinária , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/fisiologia , Piloro/metabolismo , Salmo salar/genética , Transcriptoma , Xantofilas/metabolismo
3.
Mar Biotechnol (NY) ; 22(4): 581-593, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32588252

RESUMO

Astaxanthin (Ax), the main carotenoid responsible for the distinct red flesh color in salmonids (Oncorhynchus, Salvelinus, Salmo, and Parahucho), is added to the diet of farmed fish at a substantial cost. Despite the great economical value for the salmon industry, the key molecular mechanisms involved in the regulation of muscle coloration are poorly understood. Chinook salmon (Oncorhynchus tshawytscha) represent an ideal model to study flesh coloration because they exhibit a distinct color polymorphism responsible for two color morphs, white and red flesh pigmented fish. This study was designed to identify the molecular basis for the development of red and white coloration of fish reared under the same experimental conditions and to better understand the absorption mechanism of Ax in salmonids. Pyloric caeca, liver, and muscle of both groups (n = 6 each) were selected as the most likely critical target organs to be involved respectively in the intestinal uptake, metabolism, and retention of Ax. Difference in the transcriptome profile of each tissue using next-generation sequencing technology was conducted. Ten KEGG pathways were significantly enriched for differentially expressed genes between red and white salmon pylorus tissue, while none for the transcriptome profile in the other two tissues. Differential expressed gene (DE) analyses showed that there were relatively few differences in muscle (31 DE genes, p < 0.05) and liver (43 DE genes, p < 0.05) of white and red Chinook salmon compared approximately 1125 DE genes characterized in the pylorus tissue, with several linked to Ax binding ability, absorption, and metabolism.


Assuntos
Salmão/genética , Salmão/metabolismo , Transcriptoma , Animais , Aquicultura , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/genética , Piloro/metabolismo , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA