Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(6): e25631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813760

RESUMO

The plains vizcacha, Lagostomus maximus, is a precocial hystricomorph rodent with a gyrencephalic brain. This work aimed to perform a time-lapse analysis of the embryonic brain cortical development in the plains vizcacha to establish a species-specific temporal window for corticogenesis and the gyrencephaly onset. Additionally, a comparative examination with evolutionarily related rodents was conducted. Embryos from 40 embryonic days (ED) until the end of pregnancy ( ∼ $\sim $ 154 ED) were evaluated. The neuroanatomical examination determined transverse sulci at 80 ED and rostral lateral and caudal intraparietal sulci around 95 ED. Histological examination of corticogenesis showed emergence of the subplate at 43 ED and expansion of the subventricular zone (SVZ) and its division into inner and outer SVZs around 54 ED. The neocortical layers formation followed an inside-to-outside spatiotemporal gradient beginning with the emergence of layers VI and V at 68 ED and establishing the final six neocortical layers around 100 ED. A progressive increment of gyrencephalization index (GI) from 1.005 ± 0.003 around 70 ED, which reflects a smooth cortex, up to 1.07 ± 0.009 at the end of gestation, reflecting a gyrencephalic neuroanatomy, was determined. Contrarily, the minimum cortical thickness (MCT) progressively decreased from 61 ED up to the end of gestation. These results show that the decrease in the cortical thickness, which enables the onset of neocortical invaginations, occurs together with the expansion and subdivision of the SVZ. The temporal comparison of corticogenesis in plains vizcacha with that in relative species reflects a prenatal long process compared with other rodents that may give an evolutionary advantage to L. maximus as a precocial species.


Assuntos
Córtex Cerebral , Roedores , Animais , Córtex Cerebral/crescimento & desenvolvimento , Roedores/anatomia & histologia , Feminino , Gravidez , Neurogênese/fisiologia , Neocórtex/crescimento & desenvolvimento
2.
Anat Rec (Hoboken) ; 307(3): 658-668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328879

RESUMO

Oxygenated blood is required for the adequate metabolic activity of the brain. This is supplied by the circle of Willis (CoW) and the vertebrobasilar and carotid systems. The CoW ensures blood flow in case of arterial stenosis or occlusion. Different animal models have been explored for the CoW morphological and functional study. This work aims to characterize the vascular architecture of the CoW of the plains vizcacha, Lagostomus maximus (Suborder: Hystricomorpha), and to compare it with evolutionarily related species of Caviomorpha and Muroidea. The blood supply in adult plains vizcachas was studied using latex cerebrovascular casts and angiography. A caudo-rostral flow direction was determined, beginning in the spinal and vertebral arteries and converging in the basilar artery which bifurcates in the carotid-basilar communication in the caudal communicating arteries. In the first third of its course, the caudal cerebral arteries project laterally, and the middle and rostral cerebral arteries bifurcate from their rostral terminal segment, supplying the temporo-parietal and frontal cortex. The CoW architecture is mainly conserved between rodent species. Likewise, the small neurovascular variations observed could be considered phylogenetic morphological variations more than evolutionary adaptations. The absence of the rostral communicating artery that generates the rostral open architecture of the CoW in the vizcacha as in the other analyzed species, supports the need for a revision of the CoW classical function as a security system. Finally, this work supports the importance of expanding our understanding of brain anatomy among species, which may contribute to a better understanding of functional neuroanatomy.


Assuntos
Encéfalo , Hemodinâmica , Animais , Filogenia , Círculo Arterial do Cérebro , América do Sul , Circulação Cerebrovascular
3.
J Comp Neurol ; 531(7): 720-742, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716283

RESUMO

In mammals, gestation is considered a physiological hyperprolactinemia status. Prolactin (PRL) is one of the modulators of gonadotropin-releasing hormone (GnRH) neurons function. The South American plains vizcacha (Lagostomus maximus) is a unique model to study the regulation of hypothalamic GnRH neurons by direct and indirect steroid-dependent pathways. The aim was to characterize the hypothalamic expression of endocrine markers in vizcacha during gestation as well as their response to experimental induced hyperprolactinemia. The possible involvement of PRL regulatory pathways on GnRH in the context of hypothalamic and pituitary reactivation in mid-gestating vizcachas was discussed. Using two in vivo approaches, we determined changes in the hypothalamic expression and distribution of prolactin receptor (PRLR), tyrosine hydroxylase (TH), and dopamine type 2 receptor. A significant increment in the number of tuberoinfundibular dopaminergic (TIDA) neurons was determined in the arcuate nucleus from early to term pregnancy. On the other hand, at preoptic area, the number of both TH+PRLR+ and GnRH+PRLR+ double-labeled neurons significantly decreased at mid-pregnancy probably allowing the recovery of GnRH expression indicating that both types of neurons may represent the key points of PRL indirect and direct pathways modulating GnRH. Moreover, in a model of induced hyperprolactinemic vizcachas, the inhibitory effect of PRL on GnRH at both expression and delivery levels were confirmed. These results suggest the concomitant participation of both PRL regulatory pathways on GnRH modulation and pinpoint the key role of PRL on GnRH expression enabling the recovery of the hypothalamic activity during the gestation in this species.


Assuntos
Hormônio Liberador de Gonadotropina , Hiperprolactinemia , Gravidez , Feminino , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Receptores da Prolactina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Hiperprolactinemia/metabolismo , Hipotálamo/metabolismo , Roedores/metabolismo , Neurônios Dopaminérgicos/metabolismo
4.
PLoS One ; 17(7): e0271067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802690

RESUMO

Reactivation of the hypothalamic-pituitary-ovarian (HPO) axis triggered by the decline in serum progesterone in mid-gestation is an uncommon trait that distinguishes the vizcacha from most mammals. Accessory corpora lutea (aCL) developed upon this event have been proposed as guarantors of the restoration of the progesterone levels necessary to mantain gestation. Therefore, the steroidogenic input of primary CL (pCL) vs aCL was evaluated before and after HPO axis-reactivation (BP and AP respectively) and in term pregnancy (TP). Nonpregnant-ovulated females (NP) were considered as the pCL-starting point group. In BP, the ovaries mainly showed pCL, whose LH receptor (LHR), StAR, 3ß-HSD, 20α-HSD, and VEGF immunoexpressions were similar or lower than those of NP. In AP, luteal reactivity increased significantly compared to the previous stages, and the pool of aCL developed in this stage represented 20% of the ovarian structures, equaling the percentage of pCL. Both pCL and aCL luteal cells shared similar histological features consistent with secretory activity. Although pCL and aCL showed equivalent labeling intensity for the luteotropic markers, pCL were significantly larger than aCL. Towards TP, both showed structural disorganization and loss of secretory characteristics. No significant DNA fragmentation was detected in luteal cells throughout gestation. Our findings indicate that the LH surge derived from HPO axis-reactivation targets the pCL and boost luteal steroidogenesis and thus progesterone production. Because there are many LHR-expressing antral follicles in BP, they also respond to the LH stimuli and luteinize without extruding the oocyte. These aCL certainly contribute but it is the steroidogenic restart of the pCL that is the main force that restores progesterone levels, ensuring that gestation is carried to term. Most importantly, the results of this work propose luteal steroidogenesis reboot as a key event in the modulation of vizcacha pregnancy and depict yet another distinctive aspect of its reproductive endocrinology.


Assuntos
Células Lúteas , Progesterona , Animais , Corpo Lúteo , Feminino , Hormônio Luteinizante , Gravidez , Receptores do LH , Roedores/genética
5.
J Comp Physiol B ; 192(1): 141-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459966

RESUMO

Melatonin, the key messenger of photoperiodic information, is synthesized in the pineal gland by arylalkylamine N-acetyltransferase enzyme (AANAT). It binds to specific receptors MT1 and MT2 located in the hypothalamus and pituitary gland. Melatonin can modulate the reproductive axis affecting the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). The South American plains vizcacha, Lagostomus maximus, shows natural poliovulation of up to 800 oocytes per estrous cycle, a 154-day long pregnancy, and reactivation of the reproductive axis at mid-gestation with pre-ovulatory follicular recruitment, presence of active corpora lutea, and variations of the endocrine status. Here we analyzed the involvement of melatonin in the modulation of the hypothalamic and pituitary gland physiology of vizcacha thorough several approaches, including histological localization of melatoninergic system components, assessment of melatoninergic components expression throughout the reproductive cycle, and evaluation of the effect of melatonin on hypothalamic and pituitary activities during the follicular and luteal phases of the estrous cycle. AANAT and melatonin receptors were localized in the pineal gland and preoptic area of the hypothalamus. Increase in pineal AANAT and serum melatonin expression was observed as pregnancy progressed, with the lowest hypothalamic MT1 and MT2 levels at mid-pregnancy. Pulsatility assays demonstrated that melatonin induces GnRH and LH secretion at luteal phase. The melatoninergic system effects on hypothalamic and pituitary gland hormones secretion during pregnancy pinpoint to melatonin as a potential key factor underlying the reactivation of the reproductive axis activity at mid-gestation.


Assuntos
Melatonina , Animais , Feminino , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Melatonina/metabolismo , Hipófise/metabolismo , Gravidez , América do Sul
6.
Gen Comp Endocrinol ; 296: 113518, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32474048

RESUMO

In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Homeostase , Glândulas Mamárias Animais/metabolismo , Receptores LHRH/genética , Roedores/genética , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Lactação/fisiologia , Ligantes , Especificidade de Órgãos , Gravidez , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Receptores LHRH/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Reprodução , Transdução de Sinais/efeitos dos fármacos
7.
Brain Behav Evol ; 95(6): 318-329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33910193

RESUMO

Depending on the presence or absence of sulci and convolutions, the brains of mammals are classified as gyrencephalic or lissencephalic. We analyzed the encephalic anatomy of the hystricomorph rodent Lagostomus maximus in comparison with other evolutionarily related species. The encephalization quotient (EQ), gyrencephaly index (GI), and minimum cortical thickness (MCT) were calculated for the plains vizcacha as well as for other myomorph and hystricomorph rodents. The vizcacha showed a gyrencephalic brain with a sagittal longitudinal fissure that divides both hemispheres, and 3 pairs of sulci with bilateral symmetry; that is, lateral-rostral, intraparietal, and transverse sulci. The EQ had one of the lowest values among Hystricomorpha, while GI was one of the highest. Besides, the MCT was close to the mean value for the suborder. The comparison of EQ, GI, and MCT values between hystricomorph and myomorph species allowed the detection of significant variations. Both EQ and GI showed a significant increase in Hystricomorpha compared to Myomorpha, whereas a Pearson's analysis between EQ and GI depicted an inverse correlation pattern for Hystricomorpha. Furthermore, the ratio between MCT and GI also showed a negative correlation for Hystricomorpha and Myomorpha. Our phylogenetic analyses showed that Hystricomorpha and Myomorpha do not differ in their allometric patterning between the brain and body mass, GI and brain mass, and MCT and GI. In conclusion, gyrencephalic neuroanatomy in the vizcacha could have developed from the balance between the brain size, the presence of invaginations, and the cortical thickness, which resulted in a mixed encephalization strategy for the species. Gyrencephaly in the vizcacha, as well as in other Hystricomorpha, advocates in favor of the proposal that in the more recently evolved Myomorpha lissencephaly would have arisen from a phenotype reversal process.

8.
J Mol Histol ; 50(6): 515-531, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31515635

RESUMO

The striatum is an essential component of the basal ganglia that regulatessensory processing, motor, cognition, and behavior. Depending on the species, the striatum shows a unique structure called caudate-putamen as in mice, or its separation into two regions called caudate and lenticular nuclei, the latter formed by putamen and globus pallidus areas, as in primates. These structures have two compartments, striosome and matrix. We investigated the structural organization, GABAergic and tyrosine hydroxylase (TH) expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus. Its striatum showed regionalization arising from the presence of an internal capsule, and a similar organization to a striosome-matrix compartmentalization. GABAergic neurons in the matrix of caudate exhibited parvalbumin, calretinin, calbindin, GAD65, and NADPH-d-immunoreactivity. These were also expressed in cells of the putamen with the exception of calretinin showing neurofibers localization. Globus pallidus showed parvalbumin- and GAD65-immunoreactive cells, and calretinin- and calbindin-immunoreactive neuropil, plus GABA-A-immunoreactive neurofibers. NADPH-d-, GAD65- and GABA-A-immunoreactive neurons were larger than parvalbumin-, calretinin-, and calbindin-immunoreactive cells, whereas calbindin-immunoreactive cells were the most abundant. In addition, TH-immunoreactive neuropil was observed in the matrix of the striatum. A significant larger TH-immunoreactive area and neuron number was found in females compared to males. The presence of an internal capsule suggests an adaptive advantage concerning motor and cognitive abilities favoring reaction time in response to predators. In an anatomy-evolutive perspective, the striatum of vizcacha seems to be closer to that of humans than to that of laboratory traditional models such as mouse.


Assuntos
Corpo Estriado/metabolismo , Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Corpo Estriado/anatomia & histologia , Feminino , Globo Pálido/anatomia & histologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Parvalbuminas/metabolismo , Roedores
9.
Gen Comp Endocrinol ; 273: 40-51, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656043

RESUMO

The South American plains vizcacha, Lagostomus maximus, is a caviomorph rodent native from Argentina, Bolivia and Paraguay. It shows peculiar reproductive features like pre-ovulatory follicle recruitment during pregnancy with an ovulatory process at around mid-gestation. We have described the activation of the hypothalamic - pituitary - ovarian (HPO) axis during pregnancy. A progressive decrease of progesterone (P4) at mid-pregnancy elicits the delivery of gonadotropin-releasing hormone (GnRH) with the consequent secretion of follicle stimulating hormone (FSH) and estradiol (E2) followed by luteinizing hormone (LH) release resulting in follicular luteinization and the P4 concentration recover. Pituitary gland is the central regulator of the HPO axis being E2 a key hormone involved in the regulation of its activity. In this work we analyzed the action of E2 on the pituitary response to the GnRH wave as well as its involvement on LH secretion at mid-gestation in L. maximus. The expression of GnRHR at the pituitary pars distalis showed a significant decrease at mid-pregnancy compared to early- and term-gestating females. ERα showed a significant increment from mid-gestation whereas ERß did not show variations throughout pregnancy; whereas the LH expression in the pituitary pars distalis showed a significant increase at mid-gestation, concordantly with serum LH, which was followed by a decrease at term-gestation with similar values than at early-pregnancy. The number of cells with co-localization of ERα and GnRHR showed a decline at mid-pregnancy related to early- and term-gestation, whereas the cells with co-localization of ERα and LH increased at mid- and term-pregnancy. On the other hand, ex vivo measuring of LH pulsatility showed a significant increment in the total mass of LH delivered at mid-pregnancy followed by a decrease at term-gestation. The stimulation of ERα with the PPT specific agonist induced a significant increment in the total mass of LH released, whereas no changes were determined when ERß was stimulated with its specific agonist MPP. These results suggest that LH pulsatility rise at mid-pregnancy would be enabled by the increase of E2 acting through ERα.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hormônio Luteinizante/metabolismo , Hipófise/metabolismo , Roedores/metabolismo , Animais , Antineoplásicos Hormonais , Receptor beta de Estrogênio/metabolismo , Feminino , Adeno-Hipófise/metabolismo , Gravidez , Receptores LHRH/metabolismo
10.
J Mol Histol ; 48(3): 259-273, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317066

RESUMO

Gonadotropin-releasing hormone (GnRH) is the key regulator of the hypothalamic-pituitary-gonadal axis. Estradiol (E2) affects GnRH synthesis and delivery. Hypothalamic estrogen receptors (ER) modulate GnRH expression acting as transcription factors. The South American plains vizcacha, Lagostomus maximus, is able to ovulate up to 800 oocytes per reproductive cycle, and shows continuous folliculogenesis with pre-ovulatory follicle formation and an ovulatory event at mid-gestation. The aim of this work was to analyze the hypothalamic expression of ER in the vizcacha at different gestational time-points, and its relationship with GnRH expression, serum luteinizing hormone (LH) and E2. The hormonal pattern of mid-gestating vizcachas was comparable to ovulating-females with significant increases in GnRH, LH and E2. Hypothalamic protein and mRNA expression of ERα varied during pregnancy with a significant increase at mid-gestation whereas ERß mRNA expression did not show significant variations. Hypothalamic immunolocalization of ERα was observed in neurons of the diagonal band of Brocca, medial preoptic area (mPOA), periventricular, suprachiasmatic, supraoptic (SON), ventromedial, and arcuate nuclei, and medial eminence, with a similar distribution throughout gestation. In addition, all GnRH neurons of the mPOA and SON showed ERα expression with no differences across the reproductive status. The correlation between GnRH and ERα at mid-gestation, and their co-localization in the hypothalamic neurons of the vizcacha, provides novel information compared with other mammals suggesting a direct action of estrogen as part of a differential reproductive strategy to assure GnRH synthesis during pregnancy.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Neurônios/química , Animais , Estradiol/metabolismo , Feminino , Idade Gestacional , Hormônio Luteinizante/sangue , Gravidez , Roedores
11.
Gen Comp Endocrinol ; 232: 174-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26704854

RESUMO

Gonadotropin-releasing hormone (GnRH) is the regulator of the hypothalamic-hypophyseal-gonadal (HHG) axis. GnRH and GAP (GnRH-associated protein) are both encoded by a single preprohormone. Different variants of GnRH have been described. In most mammals, GnRH is secreted in a pulsatile manner that stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The South-American plains vizcacha, Lagostomus maximus, is a rodent with peculiar reproductive features including natural poly-ovulation up to 800 oocytes per estrous cycle, pre-ovulatory follicle formation throughout pregnancy and an ovulatory process which takes place at mid-gestation and adds a considerable number of secondary corpora lutea. Such features should occur under a special modulation of the HHG axis, guided by GnRH. The aim of this study was to sequence hypothalamic GnRH preprogonadotrophin mRNA in the vizcacha, to compare it with evolutionarily related species and to identify its expression, distribution and pulsatile pattern of secretion. The GnRH1variant was detected and showed the highest homology with that of chinchilla, its closest evolutionarily related species. Two isoforms of transcripts were identified, carrying the same coding sequence, but different 5' untranslated regions. This suggests a sensitive equilibrium between RNA stability and translational efficiency. A predominant hypothalamic localization and a pulsatile secretion pattern of one pulse of GnRH every hour were found. The lower homology found for GAP, also among evolutionarily related species, depicts a potentially different bioactivity.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Animais , Feminino , Gravidez , Análise de Sequência , América do Sul , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA