Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pain ; 162(4): 1163-1175, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027220

RESUMO

ABSTRACT: Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos de Enxaqueca , Cefaleia Pós-Traumática , Animais , Lesões Encefálicas Traumáticas/complicações , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Hiperalgesia/etiologia , Camundongos , Transtornos de Enxaqueca/etiologia
2.
Pain ; 159(11): 2306-2317, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29994995

RESUMO

Migraine is the third most common disease in the world (behind dental caries and tension-type headache) with an estimated global prevalence of 15%, yet its etiology remains poorly understood. Recent clinical trials have heralded the potential of therapeutic antibodies that block the actions of the neuropeptide calcitonin gene-related peptide (CGRP) or its receptor to prevent migraine. Calcitonin gene-related peptide is believed to contribute to trigeminal nerve hypersensitivity and photosensitivity in migraine, but a direct role in pain associated with migraine has not been established. In this study, we report that peripherally administered CGRP can act in a light-independent manner to produce spontaneous pain in mice that is manifested as a facial grimace. As an objective validation of the orbital tightening action unit of the grimace response, we developed a squint assay using a video-based measurement of the eyelid fissure, which confirmed a significant squint response after CGRP injection, both in complete darkness and very bright light. These indicators of discomfort were completely blocked by preadministration of a monoclonal anti-CGRP-blocking antibody. However, the nonsteroidal anti-inflammatory drug meloxicam failed to block the effect of CGRP. Interestingly, an apparent sex-specific response to treatment was observed with the antimigraine drug sumatriptan partially blocking the CGRP response in male, but not female mice. These results demonstrate that CGRP can induce spontaneous pain, even in the absence of light, and that the squint response provides an objective biomarker for CGRP-induced pain that is translatable to humans.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/toxicidade , Dor/induzido quimicamente , Dor/fisiopatologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anticorpos/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Modelos Animais de Doenças , Dor Facial/induzido quimicamente , Dor Facial/tratamento farmacológico , Injeções Intraperitoneais , Locomoção/efeitos dos fármacos , Meloxicam , Camundongos , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Sumatriptana/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA