Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1812, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418834

RESUMO

Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.


Assuntos
Antozoários , Nácar , Animais , Carbonato de Cálcio/química , Minerais/química , Cristalização
2.
Adv Mater ; 35(28): e2300373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36864010

RESUMO

Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3 ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3 biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations are consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite. Molecular dynamics (MD) simulations of bicrystals at the molecular scale reveal that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.


Assuntos
Antozoários , Nácar , Animais , Exoesqueleto/química , Carbonato de Cálcio/química , Minerais/química , Nácar/química
3.
J Mater Chem B ; 10(36): 6958-6964, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35971914

RESUMO

Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibility and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their strong piezoelectric polar 〈001〉 direction aligned with the film thickness. Based on the recently-developed solidification approach of a polyvinyl alcohol (PVA) and glycine aqueous solution, in this work, we demonstrate that the crystal orientation of the as-synthesized film is determined by the orientation of glycine crystal nuclei. By controlling the local nucleation kinetics via surface curvature tuning, we shifted the nucleation site from the edge to the middle of the liquid film, and thereby aligned the 〈001〉 direction vertically. As a result, the PVA-glycine-PVA sandwich film exhibits the highest aver-age piezoelectric coefficient d33 of 6.13 ± 1.13 pC N-1. This work demonstrates a promising kinetic approach to achieve crystallization and property control in a scalable biocrystal manufacturing process.


Assuntos
Glicina , Álcool de Polivinil , Aminoácidos/química , Materiais Biocompatíveis , Cristalização , Glicina/química , Álcool de Polivinil/química
4.
J Am Chem Soc ; 144(3): 1332-1341, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037457

RESUMO

The mature skeletons of hard corals, termed stony or scleractinian corals, are made of aragonite (CaCO3). During their formation, particles attaching to the skeleton's growing surface are calcium carbonate, transiently amorphous. Here we show that amorphous particles are observed frequently and reproducibly just outside the skeleton, where a calicoblastic cell layer envelops and deposits the forming skeleton. The observation of particles in these locations, therefore, is consistent with nucleation and growth of particles in intracellular vesicles. The observed extraskeletal particles range in size between 0.2 and 1.0 µm and contain more of the amorphous precursor phases than the skeleton surface or bulk, where they gradually crystallize to aragonite. This observation was repeated in three diverse genera of corals, Acropora sp., Stylophora pistillata─differently sensitive to ocean acidification (OA)─and Turbinaria peltata, demonstrating that intracellular particles are a major source of material during the additive manufacturing of coral skeletons. Thus, particles are formed away from seawater, in a presumed intracellular calcifying fluid (ICF) in closed vesicles and not, as previously assumed, in the extracellular calcifying fluid (ECF), which, unlike ICF, is partly open to seawater. After particle attachment, the growing skeleton surface remains exposed to ECF, and, remarkably, its crystallization rate varies significantly across genera. The skeleton surface layers containing amorphous pixels vary in thickness across genera: ∼2.1 µm in Acropora, 1.1 µm in Stylophora, and 0.9 µm in Turbinaria. Thus, the slow-crystallizing Acropora skeleton surface remains amorphous and soluble longer, including overnight, when the pH in the ECF drops. Increased skeleton surface solubility is consistent with Acropora's vulnerability to OA, whereas the Stylophora skeleton surface layer crystallizes faster, consistent with Stylophora's resilience to OA. Turbinaria, whose response to OA has not yet been tested, is expected to be even more resilient than Stylophora, based on the present data.


Assuntos
Concentração de Íons de Hidrogênio
5.
Proc Natl Acad Sci U S A ; 117(48): 30159-30170, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188087

RESUMO

Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.


Assuntos
Antozoários/anatomia & histologia , Osso e Ossos/anatomia & histologia , Animais , Antozoários/ultraestrutura , Recifes de Corais , Íons , Modelos Anatômicos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA