Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35156683

RESUMO

This work analyzes a mathematical model for the metabolic dynamics of a cone photoreceptor, which is the first model to account for energy generation from fatty acids oxidation of shed photoreceptor outer segments (POS). Multiple parameter bifurcation analysis shows that joint variations in external glucose, the efficiency of glucose transporter 1 (GLUT1), lipid utilization for POS renewal, and oxidation of fatty acids affect the cone's metabolic vitality and its capability to adapt under glucose-deficient conditions. The analysis further reveals that when glucose is scarce, cone viability cannot be sustained by only fueling energy production in the mitochondria, but it also requires supporting anabolic processes to create lipids necessary for cell maintenance and repair. In silico experiments are used to investigate how the duration of glucose deprivation impacts the cell without and with a potential GLUT1 or oxidation of fatty acids intervention as well as a dual intervention. The results show that for prolonged duration of glucose deprivation, the cone metabolic system does not recover with higher oxidation of fatty acids and requires greater effectiveness of GLUT1 to recover. Finally, time-varying global sensitivity analysis (GSA) is applied to assess the sensitivity of the model outputs of interest to changes and uncertainty in the parameters at specific times. The results reveal a critical temporal window where there would be more flexibility for interventions to rescue a cone cell from the detrimental consequences of glucose shortage.


Assuntos
Glucose , Células Fotorreceptoras Retinianas Cones , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Modelos Teóricos , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
Front Vet Sci ; 8: 687084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239916

RESUMO

Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments.

3.
PLoS Comput Biol ; 14(6): e1006206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912862

RESUMO

Nerve cells produce electrical impulses ("spikes") through the coordinated opening and closing of ion channels. Markov processes with voltage-dependent transition rates capture the stochasticity of spike generation at the cost of complex, time-consuming simulations. Schmandt and Galán introduced a novel method, based on the stochastic shielding approximation, as a fast, accurate method for generating approximate sample paths with excellent first and second moment agreement to exact stochastic simulations. We previously analyzed the mathematical basis for the method's remarkable accuracy, and showed that for models with a Gaussian noise approximation, the stationary variance of the occupancy at each vertex in the ion channel state graph could be written as a sum of distinct contributions from each edge in the graph. We extend this analysis to arbitrary discrete population models with first-order kinetics. The resulting decomposition allows us to rank the "importance" of each edge's contribution to the variance of the current under stationary conditions. In most cases, transitions between open (conducting) and closed (non-conducting) states make the greatest contributions to the variance, but there are exceptions. In a 5-state model of the nicotinic acetylcholine receptor, at low agonist concentration, a pair of "hidden" transitions (between two closed states) makes a greater contribution to the variance than any of the open-closed transitions. We exhaustively investigate this "edge importance reversal" phenomenon in simplified 3-state models, and obtain an exact formula for the contribution of each edge to the variance of the open state. Two conditions contribute to reversals: the opening rate should be faster than all other rates in the system, and the closed state leading to the opening rate should be sparsely occupied. When edge importance reversal occurs, current fluctuations are dominated by a slow noise component arising from the hidden transitions.


Assuntos
Potenciais de Ação/fisiologia , Cadeias de Markov , Processos Estocásticos , Algoritmos , Simulação por Computador , Ativação do Canal Iônico/fisiologia , Cinética , Potenciais da Membrana/fisiologia , Modelos Biológicos , Modelos Neurológicos , Neurônios/fisiologia , Distribuição Normal
4.
Front Behav Neurosci ; 12: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622461

RESUMO

An animal's ability to navigate an olfactory environment is critically dependent on the activities of its first-order olfactory receptor neurons (ORNs). While considerable research has focused on ORN responses to odorants, the mechanisms by which olfactory information is encoded in the activities of ORNs and translated into navigational behavior remain poorly understood. We sought to determine the contributions of most Drosophila melanogaster larval ORNs to navigational behavior. Using odorants to activate ORNs and a larval tracking assay to measure the corresponding behavioral response, we observed that larval ORN activators cluster into four groups based on the behavior responses elicited from larvae. This is significant because it provides new insights into the functional relationship between ORN activity and behavioral response. Subsequent optogenetic analyses of a subset of ORNs revealed previously undescribed properties of larval ORNs. Furthermore, our results indicated that different temporal patterns of ORN activation elicit different behavioral outputs: some ORNs respond to stimulus increments while others respond to stimulus decrements. These results suggest that the ability of ORNs to encode temporal patterns of stimulation increases the coding capacity of the olfactory circuit. Moreover, the ability of ORNs to sense stimulus increments and decrements facilitates instantaneous evaluations of concentration changes in the environment. Together, these ORN properties enable larvae to efficiently navigate a complex olfactory environment. Ultimately, knowledge of how ORN activity patterns and their weighted contributions influence odor coding may eventually reveal how peripheral information is organized and transmitted to subsequent layers of a neural circuit.

5.
J Math Neurosci ; 4(1): 6, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742077

RESUMO

Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin-Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán's approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process.

6.
Am J Physiol Endocrinol Metab ; 303(2): E243-52, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22621869

RESUMO

Expression of GFP in GnRH neurons has allowed for studies of individual GnRH neurons. We have demonstrated previously the preservation of physiological function in male GnRH-GFP mice. In the present study, we confirm using biocytin-filled GFP-positive neurons in the hypothalamic slice preparation that GFP-expressing somata, axons, and dendrites in hypothalamic slices from GnRH-GFP rats are GnRH1 peptide positive. Second, we used repetitive sampling to study hormone secretion from GnRH-GFP transgenic rats in the homozygous, heterozygous, and wild-type state and between transgenic and Wistar males after ~4 yr of backcrossing. Parameters of hormone secretion were not different between the three genetic groups or between transgenic males and Wistar controls. Finally, we performed long-term recording in as many GFP-identified GnRH neurons as possible in hypothalamic slices to determine their patterns of discharge. In some cases, we obtained GnRH neuronal recordings from individual males in which blood samples had been collected the previous day. Activity in individual GnRH neurons was expressed as total quiescence, a continuous pattern of firing of either low or relatively high frequencies or an intermittent pattern of firing. In males with both intensive blood sampling (at 6-min intervals) and recordings from their GnRH neurons, we analyzed the activity of GnRH neurons with intermittent activity above 2 Hz using cluster analysis on both data sets. The average number of pulses was 3.9 ± 0.6/h. The average number of episodes of firing was 4.0 ± 0.6/h. Therefore, the GnRH pulse generator may be maintained in the sagittal hypothalamic slice preparation.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/fisiologia , Masculino , Precursores de Proteínas/análise , Ratos , Ratos Transgênicos , Ratos Wistar
7.
Genetics ; 180(3): 1501-9, 2008 11.
Artigo em Inglês | MEDLINE | ID: mdl-18791261

RESUMO

Results of Nowak and collaborators concerning the onset of cancer due to the inactivation of tumor suppressor genes give the distribution of the time until some individual in a population has experienced two prespecified mutations and the time until this mutant phenotype becomes fixed in the population. In this article we apply these results to obtain insights into regulatory sequence evolution in Drosophila and humans. In particular, we examine the waiting time for a pair of mutations, the first of which inactivates an existing transcription factor binding site and the second of which creates a new one. Consistent with recent experimental observations for Drosophila, we find that a few million years is sufficient, but for humans with a much smaller effective population size, this type of change would take > 100 million years. In addition, we use these results to expose flaws in some of Michael Behe's arguments concerning mathematical limits to Darwinian evolution.


Assuntos
Drosophila , Evolução Molecular , Genes Reguladores , Mutação , Sequências Reguladoras de Ácido Nucleico , Animais , Simulação por Computador , Drosophila/genética , Proteínas de Drosophila/genética , Genes Reguladores/genética , Genes Supressores de Tumor/fisiologia , Deriva Genética , Genética Populacional , Modelos Genéticos , Mutação/genética , Fenótipo , Sequências Reguladoras de Ácido Nucleico/genética , Seleção Genética , Fatores de Transcrição/metabolismo , Humanos
8.
Mol Biol Evol ; 21(12): 2326-39, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15342798

RESUMO

The human genome is estimated to contain 700 zinc-finger genes, which perform many key functions, including regulating transcription. The dramatic increase in the number of these genes as we move from yeast to C. elegans to Drosophila and to humans, as well as the clustered organization of these genes in humans, suggests that gene duplication has played an important role in expanding this family of genes. Using likelihood methods developed by Yang and parsimony methods introduced by Suzuki and Gojobori, we have investigated four clusters of zinc-finger genes on human chromosome 19 and found evidence that positive selection was involved in diversifying the family of zinc-finger binding motifs.


Assuntos
Adaptação Biológica/genética , Cromossomos Humanos Par 19/genética , Evolução Molecular , Duplicação Gênica , Genoma Humano , Modelos Genéticos , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Genômica , Humanos , Funções Verossimilhança , Camundongos/genética , Filogenia , Ratos/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA