Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 251: 126396, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32163782

RESUMO

In the current study, improved exposure control and measurements were applied for the aquatic toxicity testing of a highly hydrophobic organic compound. The aim was to reliably determine the ecotoxicity of the model compound dodecylbenzene (DDB, Log KOW = 8.65) by applying passive dosing for aquatic toxicity testing exactly at the solubility limit. Methodologically, silicone O-rings were saturated by immersion in pure liquid DDB (i.e., "loading by swelling") and then used as passive dosing donors. Daphnia immobilization and fish embryo toxicity tests were successfully conducted and provide, together with recently reported algal growth inhibition data, a full base-set of ecotoxicological data according to REACH. All tests were conducted in closed test systems to avoid evaporative losses, and exposure concentrations were measured throughout test durations. The Daphnia test was optimized by placing the O-rings in cages to prevent direct contact between daphnids and the passive dosing donor. Toxicologically, Daphnia magna immobilization was 19.3 ± 8% (mean ± 95% CI; 6 tests) within 72 h, whereas Danio rerio fish embryos did not show any significant lethal or sublethal toxic responses within 96 h. Growth rate inhibition for the algae Raphidocelis subcapitata was previously reported to be 13 ± 5% in a first and 8 ± 3% in a repeated test. These results for aquatic organisms, spanning three trophic levels, demonstrate toxicity of a highly hydrophobic compound and suggest that improvements of the current ecotoxicological standard tests are needed for these "difficult-to-test" chemicals. Furthermore, the obtained toxicity results significantly question the existence of a generic Log KOW cut-off in baseline toxicity.


Assuntos
Derivados de Benzeno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Daphnia , Ecotoxicologia , Interações Hidrofóbicas e Hidrofílicas , Alimentos Marinhos , Solubilidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/química , Peixe-Zebra
2.
Environ Sci Technol ; 53(22): 13468-13476, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31612707

RESUMO

High hydrophobicity and volatility of chemicals often lead to substantial experimental challenges but were here utilized in headspace passive dosing (HS-PD) to establish and maintain exposure: the pure chemical served as a passive dosing donor for controlling exposure at saturation, whereas triglyceride oil containing the chemical was used to control lower exposure levels. These donor solutions were added to glass inserts placed in the closed test systems. Mass balance calculations confirmed a dominant donor capacity for all chemicals except isooctane. This HS-PD method was applied to algal growth inhibition and springtail lethality tests with terpenes, alkanes, and cyclic siloxanes. Headspace concentrations above the lipid donors were measured for three chemicals to determine their chemical activity, using saturated vapor as the analytical standard and thermodynamic reference. Toxicity was related to chemical activity and calculated concentrations in membranes at equilibrium with the lipid donor. For both tests and all chemicals, toxic effects were observed within or above the reported range for baseline toxicity, meaning that no excess toxicity was observed. The toxicity of siloxanes was markedly higher to the terrestrial springtail than the aquatic algae, which is consistent with a more efficient mass transfer of these volatile hydrophobic chemicals in air compared to water.


Assuntos
Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Medição de Risco
3.
Chemosphere ; 211: 694-700, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098565

RESUMO

It is challenging to conduct aquatic tests with highly hydrophobic and volatile chemicals while avoiding substantial sorptive and evaporative losses. A simple and versatile headspace passive dosing (HS-PD) method was thus developed for such chemicals: The pure liquid test chemical was added to a glass insert, which was then placed with the open end in the headspace of a closed test system containing aqueous test medium. The test chemical served as the dominating partitioning donor for establishing and maintaining maximum exposure levels in the headspace and aqueous solution, without direct contact between the donor and the test medium. The HS-PD method was cross validated against passive dosing with a saturated silicone elastomer, using headspace gas chromatography as analytical instrument and saturated vapors as reference. The HS-PD method was then applied to control the exposure in algal growth inhibition tests with the green algae Raphidocelis subcapitata. The model chemicals were C9-C14 n-alkanes and the cyclic volatile methyl siloxanes octamethyltetracyclosiloxane (D4) and decamethylpentacyclosiloxane (D5). Growth rate inhibition at the solubility limit was 100% for C9-C13 n-alkanes and 53 ±â€¯31% (95% CI) for tetradecane. A moderate inhibition of 11 ±â€¯4% (95% CI) was observed for D4, whereas no inhibition was observed for D5. The present study introduces an effective method for aquatic toxicity testing of a difficult-to-test group of chemicals and provides an improved experimental basis for investigating toxicity cut-offs.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poluentes Químicos da Água/química
5.
Chemosphere ; 167: 551-558, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27770722

RESUMO

The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth inhibition tests with green algae Raphidocelis subcapitata. Growth rate inhibition at DDB solubility was 13 ± 5% (95% CI) in a first and 8 ± 3% (95% CI) in a repeated test, which demonstrated that improved exposure control can lead to good precision and repeatability of toxicity tests. This moderate toxicity at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group of challenging chemicals, while providing a basis for investigating toxicity cut-off theories.


Assuntos
Derivados de Benzeno/toxicidade , Clorófitas/efeitos dos fármacos , Modelos Teóricos , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Derivados de Benzeno/química , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Silicones/química , Solubilidade , Poluentes Químicos da Água/química
6.
Environ Toxicol Chem ; 32(2): 361-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23147567

RESUMO

Passive dosing applies a polymer loaded with test compound(s) to establish and maintain constant exposure in laboratory experiments. Passive dosing with the silicone poly(dimethylsiloxane) was used to control exposure of the terrestrial springtail Folsomia candida to six polycyclic aromatic hydrocarbons (PAHs) in bioconcentration and toxicity experiments. Folsomia candida could move freely on the PAH-loaded silicone, resulting in exposure via air and direct contact. The bioconcentration kinetics indicated efficient uptake of naphthalene, anthracene, and pyrene through air and (near) equilibrium partitioning of these PAHs to lipids and possibly the waxy layer of the springtail cuticle. Toxicities of naphthalene, phenanthrene, and pyrene were related to chemical activity, which quantifies the energetic level and drives spontaneous processes including diffusive biouptake. Chemical activity-response relationships yielded effective lethal chemical activities (La50s) well within the expected range for baseline toxicity (0.01-0.1). Effective lethal body burdens for naphthalene and pyrene exceeded the expected range of 2 to 8 mmol kg(-1) fresh weight, which again indicated the waxy layer to be a sorbing phase. Finally, chemical activities were converted into equilibrium partitioning concentrations in lipids yielding effective lethal concentrations for naphthalene and phenanthrene in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Passive dosing was a practical approach for tightly controlling PAH exposure, which in turn provided new experimental possibilities and findings.


Assuntos
Artrópodes/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Cinética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA