Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadn2789, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809974

RESUMO

Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.


Assuntos
Proteínas de Bactérias , Adesões Focais , Guanosina Trifosfato , Adesões Focais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Guanosina Trifosfato/metabolismo , Ligação Proteica
2.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37968138

RESUMO

Streptococcus didelphis was once reported as related to severe infections in opossums. Thus, we present the first comprehensive whole-genome characterization of clinical S. didelphis strains isolated from white-eared opossums (Didelphis albiventris). Long-read whole-genome sequencing was performed using the MinION platform, which allowed the prediction of several genomic features. We observed that S. didelphis genomes harbor a cluster for streptolysin biosynthesis and a conserved genomic island with genes involved in transcriptional regulation (arlR) and transmembrane transport (bcrA). Antimicrobial resistance genes for several drug classes were found, including beta-lactam, which is the main antimicrobial class used in Streptococcus spp. infections; however, no phenotypical resistance was observed. In addition, we predicted the presence of 33 virulence factors in the analyzed genomes. High phylogenetic similarity was observed between clinical and reference strains, yet no clonality was suggested. We also proposed dnaN, gki, pros, and xpt as housekeeping candidates to be used in S. didelphis sequence typing. This is the first whole-genome characterization of S. didelphis, whose data provide important insights into its pathogenicity.


Assuntos
Anti-Infecciosos , Didelphis , Infecções Estreptocócicas , Animais , Filogenia , Streptococcus/genética , Infecções Estreptocócicas/veterinária , Brasil
3.
J Avian Med Surg ; 36(4): 421-425, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36935215

RESUMO

An adult, female, captive ostrich (Struthio camelus domesticus) was referred to a veterinary teaching hospital for a 2-week history of lethargy and a mass effect in the proximal cervical region. Physical examination revealed a fistula in the middle cervical esophagus surrounded by devitalized and necrotic tissue; feed material was found leaking from the site. Cervical radiography identified an esophageal stricture with anterior dilation due to the accumulation of feed. After receiving supportive care for 48 hours, the patient's overall status improved, allowing partial esophagectomy and resection of the affected tissues with end-to-end anastomosis. Postoperative management included fasting for 24 hours, followed by the administration of a liquid hand-rearing formula prepared with commercially available ostrich feed and administered via a feeding tube for 15 days. Proper healing of the surgical site was confirmed by esophagoscopy using a flexible endoscope 17 days after surgery. The ostrich was discharged after 27 days, with no complications recorded within the 180 days of the follow-up period. Partial cervical esophagectomy with end-to-end anastomosis along with pre- and postoperative management provided a successful outcome for the treatment of a fistulated esophageal stricture in a captive ostrich, resulting in full recovery without surgical complications.


Assuntos
Neoplasias Esofágicas , Estenose Esofágica , Struthioniformes , Feminino , Animais , Esofagectomia/veterinária , Esofagectomia/efeitos adversos , Esofagectomia/métodos , Estenose Esofágica/etiologia , Estenose Esofágica/cirurgia , Estenose Esofágica/veterinária , Hospitais Veterinários , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/veterinária , Hospitais de Ensino , Anastomose Cirúrgica/veterinária
4.
EMBO J ; 42(1): e111661, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36345779

RESUMO

In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Myxococcus xanthus/metabolismo , Fímbrias Bacterianas/química
5.
Nucleic Acids Res ; 49(19): 10956-10974, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34643711

RESUMO

Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Ilhas Genômicas , Pseudomonas aeruginosa/genética , Transativadores/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cromossomos Bacterianos , Conjugação Genética , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Regulon , Transativadores/metabolismo , Transcrição Gênica , Fatores de Virulência/metabolismo
6.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877094

RESUMO

Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.


Assuntos
Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
7.
Biochim Biophys Acta Biomembr ; 1861(2): 431-440, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414848

RESUMO

In this study, we have investigated the lipids surrounding AqpZ, and the effects of a destabilizing mutation W14A (Schmidt and Sturgis, 2017) on lipid protein interactions. In a first approach, we used Styrene Maleic Acid copolymer to prepare AqpZ containing nanodiscs, and these were analyzed for their lipid content, investigating both the lipid head-group and acyl-chain compositions. These results were complemented by native mass spectrometry of purified AqpZ in the presence of lipids, to give insights of variations in lipid binding at the surface of AqpZ. In an effort to gain molecular insights, to aid interpretation of these results, we performed a series of coarse grained molecular dynamics simulations of AqpZ, in mixed lipid membranes, and correlated our observations with the experimental measurements. These various results are then integrated to give a clearer picture of the lipid environment of AqpZ, both in the native membrane, and in lipid nanodiscs. We conclude that AqpZ contains a lipid binding-site, at the interface between the monomers of the tetramer, that is specific for cardiolipin. Almost all the cardiolipin, in AqpZ containing nanodiscs, is probably associated with this site. The SMA 3:1 nanodiscs we obtained contain a rather high proportion of lipid, and in the case of nanodiscs containing AqpZ cardiolipin is depleted. This is possibly because, in the membrane, there is little cardiolipin not associated with binding sites on the surface of the different membrane proteins. Surprisingly, we see no evidence for lipid sorting based on acyl chain length, even in the presence of a large hydrophobic mismatch, suggesting that conformational restrictions are energetically less costly than lipid sorting.


Assuntos
Aquaporinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipídeos/química , Membrana Celular/metabolismo , Lipídeos/isolamento & purificação , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Fosfolipídeos/isolamento & purificação
8.
Bio Protoc ; 8(16): e2969, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395773

RESUMO

This protocol was developed to functionalize styrene maleic acid (SMA) by direct fluorescent labeling in an easy way, accessible to biochemistry laboratories. This novel method is based on the coupling of carboxylic acids to primary amines using a carbodiimide, a reaction commonly used for protein chemistry. The procedure uses the hydrolyzed styrene-maleic acid copolymer and occurs entirely in aqueous solution with mild conditions compatible with many biomolecules.

9.
Biochim Biophys Acta Biomembr ; 1860(3): 777-783, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29273333

RESUMO

Recently, styrene-maleic acid copolymer lipid nanodiscs have become an increasingly popular tool for the study of membrane proteins. In the work we report here, we have developed a novel method for the efficient preparation of labeled nanodiscs, under chemically mild conditions, by modification of the hydrolyzed styrene-maleic acid copolymer. This protocol is designed to be easily accessible to biochemistry laboratories. We use this procedure to prepare various fluorescent nanodiscs labeled with different fluorophores. By studying the development of Förster resonance energy transfer, we demonstrate the rapid exchange of co-polymer between nanodiscs. This demonstration, in conjunction of previous work, indicates that the lipid nanodiscs prepared using this polymer are very dynamic structures with rapid exchange of the different components.


Assuntos
Maleatos/química , Nanoestruturas/química , Poliestirenos/química , Difusão Dinâmica da Luz , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Lipossomos , Microscopia Eletrônica , Estrutura Molecular , Coloração e Rotulagem/métodos
10.
ACS Omega ; 2(6): 3017-3027, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457635

RESUMO

The assembly of integral membrane proteins depends on the packing of hydrophobic interfaces. The forces driving this packing remain unclear. In this study, we have investigated the effect of mutations in these hydrophobic interfaces on the structure and function of the tetrameric Escherichia coli water channel aquaporin Z (AqpZ). Among the variants, we have constructed several fail to form tetramers and are monomeric. In particular, both of the mutants which are expected to create interfacial cavities become monomeric. Furthermore, one of the mutations can be compensated by a second-site mutation. We suggest that the constraints imposed by the nature of the lipid solvent result in interfaces that respond differently to modifications of residues. Specifically, the large size and complex conformations of lipid molecules are unable to fill small interfacial holes. Further, we observe in AqpZ that there is a link between the oligomeric state and the water channel activity. This despite the robustness of both protein folding and topology, both of which remain unchanged by the mutations we introduce. We propose that this linkage may result from the specific modes of structural flexibility in the monomeric protein.

11.
J Proteome Res ; 15(7): 2178-86, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27239679

RESUMO

MYCN and HDAC2 jointly repress the transcription of tumor suppressive miR-183 in neuroblastoma. Enforced miR-183 expression induces neuroblastoma cell death and inhibits xenograft growth in mice. Here we aimed to focus more closely on the miR-183 signaling network using a label-free mass spectrometric approach. Analysis of neuroblastoma cells transfected with either control or miR-183 expression vectors identified 85 differentially expressed proteins. All six members of the minichromosome maintenance (MCM) complex, which is indispensable for initiation and elongation during DNA replication and transcriptionally activated by MYCN in neuroblastoma, emerged to be down-regulated by miR-183. Subsequent annotation category enrichment analysis revealed a ∼14-fold enrichment in the "MCM" protein module category, which highlighted this complex as a critical node in the miR-183 signaling network. Down-regulation was confirmed by Western blotting. MCMs 2-5 were predicted by in silico methods as direct miR-183 targets. Dual-luciferase reporter gene assays with 3'-UTR constructs of the randomly selected MCMs 3 and 5 experimentally confirmed them as direct targets of miR-183. Our results reveal the MCM complex to be a critical and directly regulated node within the miR-183 signaling network in MYCN-amplified neuroblastoma cells.


Assuntos
MicroRNAs/farmacologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteína Proto-Oncogênica N-Myc/fisiologia , Neuroblastoma/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Espectrometria de Massas , MicroRNAs/metabolismo , Componente 3 do Complexo de Manutenção de Minicromossomo/efeitos dos fármacos , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 5 do Complexo de Manutenção de Minicromossomo/efeitos dos fármacos , Componente 5 do Complexo de Manutenção de Minicromossomo/metabolismo , Neuroblastoma/química , Neuroblastoma/metabolismo , Transfecção , Regulação para Cima
12.
Mol Ecol Resour ; 8(6): 1348-50, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21586042

RESUMO

Western and eastern bluebirds (Sialia mexicana and S. sialis) are socially monogamous passerines that engage in extra-pair copulations. We obtained microsatellites from S. mexicana and optimized and characterized 15 microsatellite DNA loci in 60 individuals of this species. Primer pairs yielded an average of 13 alleles per locus in western bluebirds (range 3-35 alleles) with an average observed heterozygosity of 0.68 (range 0.27-0.88). All 15 loci also successfully amplified in S. sialis (n = 24), with an average of 11.5 alleles per locus (range 4-26) and an average observed heterozygosity of 0.59 (range 0.22-0.90).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA