RESUMO
BACKGROUND: In psychosis, white matter (WM) microstructural changes have been detected previously; however, direct comparisons of findings between bipolar (BD) and schizophrenia (SZ) patients are scarce. In this study, we employed deterministic tractography to reconstruct WM tracts in BD and SZ patients. METHODS: Diffusion tensor imaging (DTI) data was carried out with n=32 euthymic BD type I patients, n=26 SZ patients and 30 matched healthy controls. Deterministic tractography using multiple indices of diffusion (fractional anisotropy (FA), tract volume (Vol), tract length (Le) and number of tracts (NofT)) were obtained from the fornix, the cingulum, the anterior thalamic radiation, and the corpus callosum bilaterally. RESULTS: We showed widespread WM microstructural changes in SZ, and changes in the corpus callosum, the left cingulum and the fornix in BD. Fornix fiber tracking scores were associated with cognitive performance in SZ, and with age and age at disease onset in the BD patient group. LIMITATIONS: Although the influence of psychopharmacological drugs as biasing variables on morphological alterations has been discussed for SZ and BD, we did not observe a clear influence of drug exposure on our findings. CONCLUSIONS: These results confirm the assumption that SZ patients have more severe WM changes than BD patients. The findings also suggest a major role of WM changes in the fornix as important fronto-limbic connections in the etiology of cognitive symptoms in SZ, but not in BD.
Assuntos
Transtorno Bipolar/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Imagem de Tensor de Difusão/métodos , Fórnice/fisiopatologia , Esquizofrenia/fisiopatologia , Substância Branca/fisiopatologia , Adulto , Transtorno Bipolar/complicações , Transtornos Cognitivos/complicações , Feminino , Fórnice/diagnóstico por imagem , Humanos , Masculino , Esquizofrenia/complicações , Substância Branca/diagnóstico por imagemRESUMO
OBJECTIVE: Working memory (WM) impairments are a prominent neurocognitive symptom in schizophrenia (SZ) and include deficits in memory for serial order and abnormalities in serial position effects (i.e., primacy and recency effects). Former studies predominantly focused on investigating these deficits applying verbal or static visual stimuli, but little is known about WM processes that involve dynamic visual movements. We examined WM for visual motion directions, its susceptibility to distraction and the effect of serial positioning. METHOD: Twenty-three patients with paranoid SZ and 23 healthy control subjects (HC) took part in the study. We conducted an adapted Sternberg-type recognition paradigm: three random dot kinematograms (RDKs) that depicted coherent visual motion were used as stimuli and a distractor stimulus was incorporated into the task. RESULTS: SZ patients performed significantly worse in the WM visual motion task, when a distractor stimulus was presented. While HC showed a recency effect for later RDKs, the effect was absent in SZ patients. WM deficits were associated with more severe psychopathological symptoms, poor visual and verbal learning, and a longer duration of illness. Furthermore, SZ patients showed impairments in several other neurocognitive domains. CONCLUSIONS: Findings suggest that early WM processing of visual motion is susceptible to interruption and that WM impairments are associated with clinical symptoms in SZ. The absence of a recency effect is discussed in respect of 3 theoretical approaches-impaired WM for serial order information, abnormalities in early visual representations (i.e., masking effects), and deficits in later visual processing (i.e., attentional blink effect). (PsycINFO Database Record