Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(20): 3785-3801, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35979635

RESUMO

Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells. However, after administration of αCD40, cDC1s were dispensable for antitumor efficacy. Instead, the abundance of activated cDCs, potentially derived from cDC2 cells, increased and further activated antitumor CD8+ T cells. Hence, distinct cDC subsets contributed to the induction of αCD40 responses. In contrast, lung carcinomas, characterized by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumor growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell death-inducing chemotherapy sensitized lung tumors to αCD40 therapy in subcutaneous and orthotopic settings. These insights into the microenvironmental regulators of response to αCD40 suggest that different tumor types would benefit from different combinations of therapies to optimize the clinical application of CD40 agonists. SIGNIFICANCE: This work highlights the temporal roles of different dendritic cell subsets in promoting CD8+ T-cell-driven responses to CD40 agonist therapy in cancer.


Assuntos
Antígenos CD40 , Células Dendríticas , Macrófagos , Neoplasias , Animais , Antígenos CD40/agonistas , Linfócitos T CD8-Positivos , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
2.
Oncoimmunology ; 11(1): 2063225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481289

RESUMO

While regulatory T cells (Tregs) and macrophages have been recognized as key orchestrators of cancer-associated immunosuppression, their cellular crosstalk within tumors has been poorly characterized. Here, using spontaneous models for breast cancer, we demonstrate that tumor-associated macrophages (TAMs) contribute to the intratumoral accumulation of Tregs by promoting the conversion of conventional CD4+ T cells (Tconvs) into Tregs. Mechanistically, two processes were identified that independently contribute to this process. While TAM-derived TGF-ß directly promotes the conversion of CD4+ Tconvs into Tregsin vitro, we additionally show that TAMs enhance PD-1 expression on CD4+ T cells. This indirectly contributes to the intratumoral accumulation of Tregs, as loss of PD-1 on CD4+ Tconvs abrogates intratumoral conversion of adoptively transferred CD4+ Tconvs into Tregs. Combined, this study provides insights into the complex immune cell crosstalk between CD4+ T cells and TAMs in the tumor microenvironment of breast cancer, and further highlights that therapeutic exploitation of macrophages may be an attractive immune intervention to limit the accumulation of Tregs in breast tumors.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Feminino , Humanos , Tolerância Imunológica , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Macrófagos Associados a Tumor
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613562

RESUMO

Bacillus Calmette-Guérin (BCG) instillations for the treatment of non-muscle-invasive bladder cancer patients can result in significant side effects and treatment failure. Immune checkpoint blockade and/or decreasing tumor-infiltrating myeloid suppressor cells may be alternative or complementary treatments. Here, we have characterized immune cell infiltration and chemoattractant molecules in mouse orthotopic MB49 bladder tumors. Our data show a 100-fold increase in CD45+ immune cells from day 5 to day 9 tumors including T cells and mainly myeloid cells. Both monocytic myeloid-derived suppressor-cells (M-MDSC) and polymorphonuclear (PMN)-MDSC were strongly increased in day 9 tumors, with PMN-MDSC representing ca. 70% of the myeloid cells in day 12 tumors, while tumor associated macrophages (TAM) were only modestly increased. The kinetic of PD-L1 tumor expression correlated with published data from patients with PD-L1 expressing bladder tumors and with efficacy of anti-PD-1 treatment, further validating the orthotopic MB49 bladder-tumor model as suitable for designing novel therapeutic strategies. Comparison of chemoattractants expression during MB49 bladder tumors grow highlighted CCL8 and CCL12 (CCR2-ligands), CCL9 and CCL6 (CCR-1-ligands), CXCL2 and CXCL5 (CXCR2-ligands), CXCL12 (CXCR4-ligand) and antagonist of C5/C5a as potential targets to decrease myeloid suppressive cells. Data obtained with a single CCR2 inhibitor however showed that the complex chemokine crosstalk would require targeting multiple chemokines for anti-tumor efficacy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Animais , Camundongos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Células Mieloides/metabolismo , Quimiocinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Sci Transl Med ; 13(606)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380768

RESUMO

Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras G12D/+;p53 -/- NSCLC, including a mismatch repair-deficient variant (Kras G12D/+;p53 -/-;Msh2 -/-) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1+ regulatory T cells (Tregs), which were more efficiently targeted by the PD-1 antibody than CD8+ T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-ß-rich tumor microenvironment that supported PD-1+ Tregs Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated Tregs, redirected the PD-1 antibody to CD8+ T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
5.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135110

RESUMO

Colony-stimulating factor 1 receptor (CSF1R) blockade abates tumor-associated macrophage (TAM) infiltrates and provides marked clinical benefits in diffuse-type tenosynovial giant cell tumors. However, facial edema is a common adverse event associated with TAM elimination in patients. In this study, we examined molecular and cellular events associated with edema formation in mice and human patients with cancer treated with a CSF1R blocking antibody. Extended antibody treatment of mice caused marked body weight gain, an indicator of enhanced body fluid retention. This was associated with an increase of extracellular matrix-remodeling metalloproteinases (MMPs), namely MMP2 and MMP3, and enhanced deposition of hyaluronan (HA) and proteoglycans, leading to skin thickening. Discontinuation of anti-CSF1R treatment or blockade of MMP activity restored unaltered body weight and normal skin morphology in the mice. In patients, edema developed at doses well below the established optimal biological dose for emactuzumab, a CSF1R dimerization inhibitor. Patients who developed edema in response to emactuzumab had elevated HA in peripheral blood. Our findings indicate that an early increase of peripheral HA can serve as a pharmacodynamic marker for edema development and suggest potential interventions based on MMP inhibition for relieving periorbital edema in patients treated with CSF1R inhibitors.


Assuntos
Edema , Macrófagos , Neoplasias , Peptídeo Hidrolases , Proteoglicanas , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
6.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

7.
MAbs ; 12(1): 1834818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151105

RESUMO

Simulating a viral infection in tumor cells is an attractive concept to eliminate tumor cells. We previously reported the molecular design and the in vitro potency of recombinant monoclonal antibodies fused to a virus-derived peptide MHC class I complex that bypass the peptide processing and MHC loading pathway and directly displays a viral peptide in an MHC class I complex on the tumor cell surface. Here, we show that a vaccination-induced single peptide-specific CD8 T cell response was sufficient to eliminate B16 melanoma tumor cells in vivo in a fully immunocompetent, syngeneic mouse tumor model when mice were treated with mouse pMHCI-IgGs fusion proteins targeting the mouse fibroblast activation protein. Tumor growth of small, established B16 lung metastases could be controlled. The pMHCI-IgG had similar potency as an analogous pan-CD3 T-cell bispecific antibody. In contrast to growth control of small tumors, none of the compounds controlled larger solid tumors of MC38 cancer cells, despite penetration of pMHCI-IgGs into the tumor tissue and clear attraction and activation of antigen-specific CD8 T cells inside the tumor. pMHCI-IgG can have a similar potency as classical pan-T-cell recruiting molecules. The results also highlight the need to better understand immune suppression in advanced solid tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Melanoma Experimental/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/imunologia
8.
Cancer Immunol Res ; 8(9): 1180-1192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661095

RESUMO

Bladder cancer is one of the most common malignancies and has poor prognosis for patients with locally advanced, muscle-invasive, disease despite the efficacy of immune checkpoint blockade. To develop more effective immunotherapy strategies, we studied a genetic mouse model carrying deletion of Tp53 and Pten in the bladder, which recapitulates bladder cancer tumorigenesis and gene expression patterns found in patients. We discovered that tumor cells became more malignant and the tumor immune microenvironment evolved from an inflammatory to an immunosuppressive state. Accordingly, treatment with anti-PD1 was ineffective, but resistance to anti-PD1 therapy was overcome by combination with a CD40 agonist (anti-CD40), leading to strong antitumor immune responses. Mechanistically, this combination led to CD8+ T-cell recruitment from draining lymph nodes. CD8+ T cells induced an IFNγ-dependent repolarization toward M1-like/IFNß-producing macrophages. CD8+ T cells, macrophages, IFN I, and IFN II were all necessary for tumor control, as demonstrated in vivo by the administration of blocking antibodies. Our results identify essential cross-talk between innate and adaptive immunity to control tumor development in a model representative of anti-PD1-resistant human bladder cancer and provide scientific rationale to target CD40 in combination with blocking antibodies, such as anti-PD1/PD-L1, for muscle-invasive bladder cancer.


Assuntos
Antígenos CD40/agonistas , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
9.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31889004

RESUMO

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Sci Transl Med ; 10(436)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643229

RESUMO

Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAFV600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.


Assuntos
Fator Estimulador de Colônias de Macrófagos/sangue , Melanoma/sangue , Melanoma/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA