Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 58(2): 735-749, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011857

RESUMO

Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.


Assuntos
Depressão/fisiopatologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/deficiência , Memória de Curto Prazo , Norepinefrina/metabolismo , Aldeído Pirúvico/efeitos adversos , Animais , Bupropiona/farmacologia , Dopamina/metabolismo , Feminino , Glutationa/metabolismo , Imobilização , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Aldeído Pirúvico/administração & dosagem , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Neurochem Res ; 45(12): 2868-2883, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32968860

RESUMO

Recent evidence suggests that young rodents submitted to high fructose (FRU) diet develop metabolic, and cognitive dysfunctions. However, it remains unclear whether these detrimental effects of FRU intake can also be observed in middle-aged mice. Nine months-old C57BL/6 female mice were fed with water (Control) or 10% FRU in drinking water during 12 weeks. After that, metabolic, and neurochemical alterations were evaluated, focusing on neurotransmitters, and antioxidant defenses. Behavioral parameters related to motor activity, memory, anxiety, and depression were also evaluated. Mice consuming FRU diet displayed increased water, and caloric intake, resulting in weight gain, which was partially compensated due to decreased food pellet intake. FRU fed animals displayed increased plasma glucose, and cholesterol levels, which was not observed in overnight-fasted animals. Superoxide dismutase (SOD), and catalase (CAT) activities were markedly decreased in the prefrontal cortex of animals receiving FRU diet, while glutathione peroxidase (GPx) slightly increased. Liver (lower GPx), striatum (higher SOD and lower CAT), and hippocampus (no changes) were less impacted. No changes were observed in glutathione reductase, and thioredoxin reductase activities, two ancillary enzymes for peroxide detoxification. FRU intake did not alter serotonin, dopamine, and norepinephrine levels in the hippocampus, prefrontal cortex, and striatum. No significant alterations were observed in working, and short-term spatial memory; and in anxiety- and depressive-like behaviors in animals treated with FRU. Increased locomotor activity was observed in FRU-fed middle-aged mice, as evaluated in the open field, elevated plus-maze, Y maze, and object location tasks. Overall, these results demonstrate that high FRU consumption can disturb antioxidant defenses, and increase locomotor activity in middle-aged mice, open the opportunity for further studies to address the underlying mechanisms related to these findings.


Assuntos
Catalase/metabolismo , Frutose/farmacologia , Locomoção/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Teste de Labirinto em Cruz Elevado , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos
3.
Neurochem Int ; 132: 104585, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678323

RESUMO

Thioredoxin interacting protein (TXNIP) binds to thioredoxin thereby limiting its activity, but it also promotes internalization of glucose transporters, participates in inflammasome activation, and controls autophagy. Published data and this work demonstrate that TXNIP responds to a number of apparently unrelated stresses, such as serum deprivation, pH change, and oxidative, osmotic and carbonyl stress. Interestingly, we noticed that hyperosmotic (NaCl) and carbonyl (methylglyoxal, MGO) stresses in HT22 neuronal cells produced a rapid loss of TXNIP (half-life ∼12 min), prompting us to search for possible mechanisms controlling this TXNIP loss, including pH change, serum deprivation, calcium metabolism and inhibition of the proteasome and other proteases, autophagy and MAPKs. None of these routes stopped the TXNIP loss induced by hyperosmotic and carbonyl stress. Besides transcriptional, translational and microRNA regulation, there is evidence indicating that mTOR and AMPK also control TXNIP expression. Indeed, AMPK-deficient mouse embryonic fibroblasts failed to respond to phenformin (AMPK activator) and compound C (AMPK inhibitor), while rapamycin induced a marked increase in TXNIP levels, confirming the known AMPK/mTOR control over TXNIP. However, the TXNIP loss induced by NaCl or MGO were observed even in AMPK deficient MEFs or after mTOR inhibition, indicating AMPK/mTOR does not participate in this rapid TXNIP loss. These results suggest that rapid TXNIP loss is a general and immediate response to stress that can improve energy availability and antioxidant protection, eventually culminating in better cell survival.


Assuntos
Carbono/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Neurônios/metabolismo , Pressão Osmótica/fisiologia , Estresse Oxidativo/fisiologia , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Transformada , Camundongos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Tiorredoxinas/genética , Fatores de Tempo
4.
Oxid Med Cell Longev ; 2019: 2715810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31049129

RESUMO

BACKGROUND: Hyperosmotic stress is an important pathophysiologic condition in diabetes, severe trauma, dehydration, infection, and ischemia. Furthermore, brain neuronal cells face hyperosmotic stress in ageing and Alzheimer's disease. Despite the enormous importance of knowing the homeostatic mechanisms underlying the responses of nerve cells to hyperosmotic stress, this topic has been underrepresented in the literature. Recent evidence points to autophagy induction as a hallmark of hyperosmotic stress, which has been proposed to be controlled by mTOR inhibition as a consequence of AMPK activation. We previously showed that methylglyoxal induced a decrease in the antioxidant proteins thioredoxin 1 (Trx1) and glyoxalase 2 (Glo2), which was mediated by AMPK-dependent autophagy. Thus, we hypothesized that hyperosmotic stress would have the same effect. METHODS: HT22 hippocampal nerve cells were treated with NaCl (37, 75, or 150 mM), and the activation of the AMPK/mTOR pathway was investigated, as well as the levels of Trx1 and Glo2. To determine if autophagy was involved, the inhibitors bafilomycin (Baf) and chloroquine (CQ), as well as ATG5 siRNA, were used. To test for AMPK involvement, AMPK-deficient mouse embryonic fibroblasts (MEFs) were used. RESULTS: Hyperosmotic stress induced a clear increase in autophagy, which was demonstrated by a decrease in p62 and an increase in LC3 lipidation. AMPK phosphorylation, linked to a decrease in mTOR and S6 ribosomal protein phosphorylation, was also observed. Deletion of AMPK in MEFs did not prevent autophagy induction by hyperosmotic stress, as detected by decreased p62 and increased LC3 II, or mTOR inhibition, inferred by decreased phosphorylation of P70 S6 kinase and S6 ribosomal protein. These data indicating that AMPK was not involved in autophagy activation by hyperosmotic stress were supported by a decrease in pS555-ULK1, an AMPK phosphorylation site. Trx1 and Glo2 levels were decreased at 6 and 18 h after treatment with 150 mM NaCl. However, this decrease in Trx1 and Glo2 in HT22 cells was not prevented by autophagy inhibition by Baf, CQ, or ATG5 siRNA. AMPK-deficient MEFs under hyperosmotic stress presented the same Trx1 and Glo2 decrease as wild-type cells. CONCLUSION: Hyperosmotic stress induced AMPK activation, but this was not responsible for its effects on mTOR activity or autophagy induction. Moreover, the decrease in Trx1 and Glo2 induced by hyperosmotic stress was independent of both autophagy and AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Neurônios/metabolismo , Pressão Osmótica , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Tiorredoxinas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular Transformada , Ativação Enzimática , Camundongos , Neurônios/citologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases/genética , Tiorredoxinas/genética
5.
Toxicol In Vitro ; 42: 273-280, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461233

RESUMO

Thiol homeostasis has a critical role in the maintenance of proper cellular functions and survival, being coordinated by the action of several reductive enzymes, including glutathione (GSH)/glutathione reductase (GR) and thioredoxin (Trx)/thioredoxin reductase (TrxR) systems. Here, we investigated the effects of the GR inhibitor 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) on the activity of thiol reductases (GR and TrxR), redox balance and mitochondrial function of A172 glioblastoma cells. 2-AAPA inhibited cell GR (IC50=6.7µM) and TrxR (IC50=8.7µM). A significant decrease in the cellular ability to decompose cumene hydroperoxide was observed and associated to a greater susceptibility to this peroxide. The redox state of peroxiredoxins (Prx1, Prx2 and Prx3) was markedly shifted to dimer 30min after treatment with 100µM 2-AAPA, an event preceding 2-AAPA-induced decrease in cell viability. Furthermore, mitochondrial function was also severely impaired, leading to a decrease in the respiratory control ratio, reserve capacity, and ATP synthesis-coupled respiration, as well as an increase in mitochondrial membrane potential. Our results indicate that inhibition of GR and TrxR activities, disruption of the ability to detoxify peroxides, increased oxidation of Prxs, as well as compromised mitochondrial function represent early events mediating 2-AAPA toxicity to A172 glioblastoma cells.


Assuntos
Acetilcisteína/análogos & derivados , Antineoplásicos/farmacologia , Glutationa Redutase/antagonistas & inibidores , Tiocarbamatos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
Neurotox Res ; 32(3): 340-350, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28478530

RESUMO

Thioredoxin (Trx) and glyoxalase (Glo) systems have been suggested to be molecular targets of methylglyoxal (MGO). This highly reactive endogenous compound has been associated with the development of neurodegenerative pathologies and cell death. In the present study, the glutathione (GSH), Trx, and Glo systems were investigated to understand early events (0.5-3 h) that may determine cell fate. It is shown for the first time that MGO treatment induces an increase in glutathione reductase (GR) protein in hippocampal slices (1 h) and HT22 nerve cells (0.5 and 2.5 h). Thioredoxin interacting protein (Txnip), thioredoxin reductase (TrxR), Glo1, and Glo2 were markedly increased (2- to 4-fold) in hippocampal slices and 1.2- to 1.3-fold in HT22 cells. This increase in protein levels in hippocampal slices was followed by a corresponding increase in GR, TrxR, and Glo1 activities, but not in HT22 cells. In these cells, GR and TrxR activities were decreased by MGO. This result is in agreement with the idea that MGO can affect the Trx/TrxR reducing system, and now we show that GR and Txnip can also be affected by MGO. Impairment in the GR or TrxR reducing capacity can impair peroxide removal by glutathione peroxidase and peroxiredoxin, as both peroxidases depend on reduced GSH and Trx, respectively. In this regard, inhibition of GR and TrxR by 2-AAPA or auranofin, respectively, potentiated MGO toxicity in differentiated SH-SY5Y cells. Overall, MGO not only triggers a clear defense response in hippocampal slices and HT22 cells but also impairs the Trx/TrxR and GSH/GR reducing couples in HT22 cells. The increased MGO toxicity caused by inhibition of GR and TrxR with specific inhibitors, or their inhibition by MGO treatment, supports the notion that both reducing systems are relevant molecular targets of MGO.


Assuntos
Sobrevivência Celular/fisiologia , Glutationa Redutase/metabolismo , Aldeído Pirúvico/toxicidade , Tiorredoxinas/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Hipocampo/enzimologia , Humanos , Camundongos , Neurônios/enzimologia , Neuroproteção/fisiologia , Aldeído Pirúvico/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Técnicas de Cultura de Tecidos
7.
Free Radic Biol Med ; 108: 270-279, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363601

RESUMO

Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. We previously showed that MGO treatment targets the thioredoxin and the glyoxalase systems, leading to a decrease in Trx1 and Glo2 proteins in immortalized mouse hippocampal HT22 nerve cells. Here, we propose that autophagy is the underlying mechanism leading to Glo2 and Trx1 loss induced by MGO. The autophagic markers p62, and the lipidated and active form of LC3, were increased by MGO (0.5mM). Autophagy inhibition with bafilomycin or chloroquine prevented the decrease in Trx1 and Glo2 at 6 and 18h after MGO treatment. Proteasome inhibition by MG132 exacerbated the effect of MGO on Trx1 and Glo2 degradation (18h), further suggesting a role for autophagy. ATG5 small interfering RNA protected Trx1 and Glo2 from MGO-induced degradation, confirming Trx1 and Glo2 loss is mediated by autophagy. In the search for the signals that control autophagy, we found that AMPK activation, a known autophagy inducer, was markedly increased by MGO treatment. AMPK activation was confirmed by increased acetyl coenzyme A carboxylase phosphorylation, a direct AMPK substrate and by decreased mTOR phosphorylation, an indirect marker of AMPK activation. To confirm that MGO-mediated Trx1 and Glo2 degradation was AMPK-dependent, AMPK-deficient mouse embryonic fibroblasts (MEFs) were treated with MGO. Wildtype MEFs presented the expected decrease in Trx1 and Glo2, while MGO was ineffective in decreasing these proteins in AMPK-deficient cells. Overall, the data indicate that MGO activates autophagy in an AMPK-dependent manner, and that autophagy was responsible for Trx1 and Glo2 degradation, confirming that Trx1 and Glo2 are molecular targets of MGO.


Assuntos
Doença de Alzheimer/metabolismo , Inflamação/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Aldeído Pirúvico/farmacologia , Tioléster Hidrolases/metabolismo , Tiorredoxinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Animais , Autofagia , Linhagem Celular Transformada , Hipocampo/patologia , Humanos , Macrolídeos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Proteólise , Serina-Treonina Quinases TOR/metabolismo
8.
Biol Trace Elem Res ; 158(3): 399-409, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723215

RESUMO

Manganese (Mn) exposure is related to industrial activities, where absorption by inhalation has high relevance. Manganism, a syndrome caused as a result of excessive accumulation of Mn in the central nervous system, has numerous symptoms similar to those seen in idiopathic Parkinson disease (IPD). Some of these symptoms, such as learning, memory, sensorial, and neurochemical changes, appear before the onset of motor deficits in both manganism and IPD. The aim of this study was to evaluate the possible neuroprotective effects of curcumin against behavioral deficits induced by Mn toxicity in young (2 months old) Swiss mice. We evaluated the effect of chronic inhalation of a Mn mixture [Mn(OAc)3 and MnCl2 (20:40 mM)], 1 h/session, three times a week, over a 14-week period on behavioral and neurochemical parameters. Curcumin was supplemented in the diet (500 or 1,500 ppm in food pellets). The Mn disrupted the motor performance evaluated in the single-pellet reach task, as well as the short- and long-term spatial memory evaluated in the step-down inhibitory avoidance task. Surprisingly, curcumin also produced similar deleterious effects in such behavioral tests. Moreover, the association of Mn plus curcumin significantly increased the levels of Mn and iron, and decreased the levels of dopamine and serotonin in the hippocampus. These alterations were not observed in the striatum. In conclusion, the current Mn treatment protocol resulted in mild deficits in motor and memory functions, resembling the early phases of IPD. Additionally, curcumin showed no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis.


Assuntos
Curcumina/farmacologia , Hipocampo/efeitos dos fármacos , Manganês/farmacologia , Metais/metabolismo , Neurotransmissores/metabolismo , Acetatos/administração & dosagem , Acetatos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Cloretos/administração & dosagem , Cloretos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Curcumina/administração & dosagem , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Hipocampo/metabolismo , Ferro/metabolismo , Masculino , Manganês/administração & dosagem , Manganês/metabolismo , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacologia , Memória/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA