Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400675, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587031

RESUMO

Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.

2.
J Org Chem ; 89(8): 5573-5588, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38578036

RESUMO

Sugar alcohols fulfilling specific structural requirements are a substance class with great potential as organic phase change materials (PCMs). Within this work, we demonstrate the indium-mediated acyloxyallylation (IMA) as a useful strategy for the synthesis of higher-carbon sugar alcohols of the galacto-family featuring all hydroxyl groups in a 1,3-anti-relationship with three major synthetic achievements: first, the dihydroxylation of the IMA-derived allylic sugar derivates was systematically studied in terms of diastereoselectivity, revealing a high degree of substrate control toward anti-addition. Second, we demonstrated the use of a "double Mitsunobu" reaction, inverting the stereochemistry of terminal diols. Third, the IMA toolbox was expanded to accomplish the synthesis of derivatives with up to 10 carbon atoms from particularly unreactive aldoses. Thermal investigations of all synthesized sugar alcohols, including examples with exclusive 1,3-anti- and suboptimal 1,3-syn-relationships as well as even and odd numbers of carbon atoms, were performed. We observed clear trends in melting points and thermal storage densities and discovered limitations of organic substances in this class with melting points above 240 °C as PCMs in terms of thermal stability. With our study, we provide insights into the dependence of thermal properties on structural features, thus contributing to further understanding of organic PCMs for thermal energy storage applications.

3.
Angew Chem Weinheim Bergstr Ger ; 136(1): e202314637, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516646

RESUMO

We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.

4.
J Org Chem ; 89(7): 5126-5133, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466932

RESUMO

In this study, we introduce a convenient Heck vinylation protocol that eliminates the requirement for ethylene gas as a coupling partner. In contrast to traditional methodologies, quaternary ammonium salts can serve as solid olefin precursors under ambient atmosphere conditions. The practicality of this method, distinguished by its convenience and safety in a one-pot reaction, renders it appealing for applications in research and discovery context.

5.
Chemistry ; 30(26): e202304205, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353032

RESUMO

This review provides a comprehensive overview of mono-alkylation methodologies targeting crucial nitrogen moieties - amines, amides, and sulfonamides - found in organic building blocks and pharmaceuticals. Emphasizing the intersection of chemical precision with drug discovery, the central challenge addressed is achieving one-pot mono-selective short-chain N-alkylations (methylations, ethylations, and n-propylations), preventing undesired overalkylation. Additionally, sustainable, safe, and benign alternatives to traditional alkylating agents, including alcohols, carbon dioxide, carboxylic acids, nitriles, alkyl phosphates, quaternary ammonium salts, and alkyl carbonates, are explored. This review, categorized by the nature of the alkylating agent, aids researchers in selecting suitable methods for mono-selective N-alkylation.

6.
Angew Chem Int Ed Engl ; 63(1): e202314637, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37931225

RESUMO

We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.

7.
Monatsh Chem ; 154(12): 1391-1404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020487

RESUMO

A series of substituted imidazoquinolines, a structurally related chemotype to pyrazoloquinolinones, a well-known class of GABAA ligands, was prepared via two synthetic procedures and the efficiency of these procedures were compared. One method relies on classical heterocyclic synthesis, the other one aims at late-stage decoration of a truncated scaffold via direct C-H functionalization. A pharmacological evaluation disclosed that one of the synthesized derivatives showed interesting activity on a α1ß3 containing receptor subtype. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02988-8.

8.
Monatsh Chem ; 154(12): 1427-1439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020488

RESUMO

The synthesis of novel pyrazolothienopyridinone derivatives as potential GABAA receptor modulators was performed and is herein described. A crucial step of the synthesis involving handling unstable aminothiophenes was managed via two different synthetic strategies delivering a set of 8 target compounds. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-023-03063-6.

9.
Nat Prod Rep ; 40(3): 676-717, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36625451

RESUMO

Historically, cannabis has always constituted a component of the civilized world; archaeological discoveries indicate that it is one of the oldest crops, while, up until the 19th century, cannabis fibers were extensively used in a variety of applications, and its seeds comprised a part of human and livestock nutrition. Additional evidence supports its exploitation for medicinal purposes in the ancient world. The cultivation of cannabis gradually declined as hemp fibers gave way to synthetic fibers, while the intoxicating ability of THC eventually overshadowed the extensive potential of cannabis. Nevertheless, the proven value of certain non-intoxicating cannabinoids, such as CBD and CBN, has recently given rise to an entire market which promotes cannabis-based products. An increase in the research for recovery and exploitation of beneficial cannabinoids has also been observed, with more than 10 000 peer-reviewed research articles published annually. In the present review, a brief overview of the history of cannabis is given. A look into the classification approaches of cannabis plants/species as well as the associated nomenclature is provided, followed by a description of their chemical characteristics and their medically valuable components. The application areas could not be absent from the present review. Still, the main focus of the review is the discussion of work conducted in the field of extraction of valuable bioactive compounds from cannabis. We conclude with a summary of the current status and outlook on the topics that future research should address.


Assuntos
Canabinoides , Cannabis , Humanos , Cannabis/química
10.
ChemCatChem ; 15(12): e202300381, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38504938

RESUMO

We present the use of Pd-complex-containing supported ionic liquid phases (SILPs) as a novel approach for continuous-flow allylic alkylation of N-nucleophiles. This immobilization strategy gave simple access to air-tolerating catalyst frameworks, providing rapid and convenient access to various achiral and chiral N-allylation products. Under optimized conditions, the flow-reaction could be maintained for 3.5 hours with constant product output; meanwhile, only a marginal 0.7 wt % of ionic liquid leaching and no detectable palladium-complex leaching could be observed.

11.
European J Org Chem ; 26(8): e202201179, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38504820

RESUMO

Herein we report, a rhodium-catalyzed Fujiwara-Moritani-type reaction of unactivated terminal alkenes and benzoic acid derivatives bearing electron donating residues under mild conditions. The acid functionality acts as a traceless directing group delivering products alkenylated in meta-position to the electron donating substituent in contrast to the usually obtained ortho- and para-substitution in Friedel-Crafts-type reactions. Remarkably, the new C-C bond is formed to the C2 of the terminal olefin, in contrast to similar reported transformations. Initially formed mixtures of exo- and endo-double bond isomers can be efficiently isomerized to the more stable endo-products.

12.
Org Lett ; 24(40): 7315-7319, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36190781

RESUMO

We herein report the use of phenyl trimethylammonium iodide (PhMe3NI) as a safe, nontoxic, and easy-to-handle reagent for an absolutely monoselective N-methylation of amides and related compounds as well as for the N-methylation of indoles. In addition, we expanded the method to N-ethylation using PhEt3NI. The ease of operational setup, high yields of ≤99%, high functional group tolerance, and especially the excellent monoselectivity for amides make this method attractive for late-stage methylation of bioactive compounds.


Assuntos
Amidas , Sais , Amidas/química , Indóis , Iodetos , Metilação , Compostos de Amônio Quaternário/química , Sais/química
13.
Org Process Res Dev ; 26(10): 2799-2810, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36311380

RESUMO

We present a continuous flow method for the conversion of bioderived limonene oxide and limonene dioxide to limonene carbonates using carbon dioxide in its supercritical state as a reagent and sole solvent. Various ammonium- and imidazolium-based ionic liquids were initially investigated in batch mode. For applying the best-performing and selective catalyst tetrabutylammonium chloride in continuous flow, the ionic liquid was physisorbed on mesoporous silica. In addition to the analysis of surface area and pore size distribution of the best-performing supported ionic liquid phase (SILP) catalysts via nitrogen physisorption, SILPs were characterized by diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric analysis and served as heterogeneous catalysts in continuous flow. Initially, the continuous flow conversion was optimized in short-term experiments resulting in the desired constant product outputs. Under these conditions, the long-term behavior of the SILP system was studied for a period of 48 h; no leaching of catalyst from the supporting material was observed in the case of limonene oxide and resulted in a yield of 16%. For limonene dioxide, just traces of leached catalysts were detected after reducing the catalyst loading from 30 to 15 wt %, thus enabling a constant product output in 17% yield over time.

14.
ACS Sustain Chem Eng ; 10(34): 11215-11222, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36061098

RESUMO

Herein, we present a novel approach for the halide-free, continuous-flow preparation of hydrophobic ionic liquids (ILs) relying on the bis(trifluoromethanesulfonyl)imide (bistriflimide, NTf2 -) anion. The simple yet fast two-step synthetic route, which involves the formation of different alkyl bistriflimides (R4NTf2), followed by the quaternization with an amine nucleophile, led to the desired ILs in high yields and excellent purities without any byproduct formation. The variable alkyl chain (R4) length and the broad range of the applicable nucleophiles (R1R2R3N) offer considerable flexibility to the synthetic protocol. The quaternization can be performed under solvent-free conditions; moreover, the homogeneous nature of these reactions allows the application of modern continuous-flow technologies. Given these advantages, the methodology can afford not just a fast and efficient alternative for the conventional synthesis of such compounds with reduced waste water production but their negligible halide content might provide a significantly broader application range of the IL products, especially for the field of materials science.

15.
Org Biomol Chem ; 20(36): 7245-7249, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36073152

RESUMO

Herein we present a photocatalyst- and additive-free radical hydroacylation of electron-poor double bonds under mild reaction conditions. Using 4-acyl-Hantzsch ester radical reservoirs, various Michael acceptors, enones and para-quinone methide substrates could be used. The protocol enabled further derivatizations and it could also be extended to a few unactivated alkenes. Moreover, the nature of the radical process was also investigated.


Assuntos
Alcenos , Processos Fotoquímicos , Alcenos/química , Catálise , Elétrons , Ésteres , Radicais Livres/química
16.
J Org Chem ; 87(16): 11042-11047, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35914236

RESUMO

Here, we present a visible light-catalyzed hydroalkylation of aryl-alkenes affording C-C bonds using aryl-alkenes and alkyl iodides. We demonstrate the formation of various hydroalkylation products in excellent yields, with primary, secondary, and tertiary alkyl iodides being tolerated in the reaction. Mechanistic experiments reveal a pathway consisting of halogen atom transfer followed by a radical-polar crossover mechanism delivering the desired hydroalkylation products.


Assuntos
Alcenos , Iodetos , Alcenos/química , Alquilação , Halogênios , Iodetos/química
17.
Angew Chem Int Ed Engl ; 61(26): e202202189, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35413147

RESUMO

Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst components led to the identification of a particularly powerful and multi-purpose organocatalyst, which was successfully applied for asymmetric epoxidations, aziridinations, aza-Michael-initiated cyclizations, as well as for a novel Robinson-like Michael-initiated ring closure/aldol cyclization. High catalytic activities and excellent stereocontrol was observed for all four reaction types, indicating the excellent versatility of our catalytic system. Furthermore, a simple change in the diamine's configuration provided easy access to both product antipodes in all cases.

18.
J Org Chem ; 87(6): 4305-4315, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35253422

RESUMO

We describe the use of phenyl trimethylammonium iodide (PhMe3NI) as an alternative methylating agent for introducing a CH3 group in α-position to a carbonyl group. Compared to conventional methylating agents, quaternary ammonium salts have the advantages of being nonvolatile, noncancerogenic, and easy-to-handle solids. This regioselective method is characterized by ease of operational setup, use of anisole as green solvent, and yields up to 85%.


Assuntos
Cetonas , Sais , Metilação , Compostos de Amônio Quaternário , Solventes
19.
ChemSusChem ; 15(6): e202102262, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34962087

RESUMO

The wide application range and ascending demand for platinum group metals combined with the progressive depletion of their natural resources renders their efficient recycling a very important and pressing matter. Primarily environmental considerations associated with state-of-the-art recovery processes have shifted the focus of the scientific community toward the investigation of alternative recycling approaches. Within this context, ionic liquids have gained considerable attention in the last two decades chiefly sparked by properties such as tunabilty, low-volatility, and relatively easy recyclability. In this review an understanding of the state-of-the-art processes, including their drawbacks and limitations, is provided. The core of the discussion is focused on platinum group metal recovery with ionic liquid-based systems. A brief insight in some environmental considerations related to ionic liquids is also provided while some discussion on research gaps, common misconceptions related to ionic liquids and outlook on unresolved issues could not be absent from this review.


Assuntos
Líquidos Iônicos , Catálise , Platina , Reciclagem
20.
Angew Chem Weinheim Bergstr Ger ; 134(26): e202202189, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38504771

RESUMO

Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst components led to the identification of a particularly powerful and multi-purpose organocatalyst, which was successfully applied for asymmetric epoxidations, aziridinations, aza-Michael-initiated cyclizations, as well as for a novel Robinson-like Michael-initiated ring closure/aldol cyclization. High catalytic activities and excellent stereocontrol was observed for all four reaction types, indicating the excellent versatility of our catalytic system. Furthermore, a simple change in the diamine's configuration provided easy access to both product antipodes in all cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA