Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(6): 8724-8733, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225491

RESUMO

We developed a high power optical parametric chirped-pulse amplification (OPCPA) system at 2.1 µm harnessing a 500 W Yb:YAG thin disk laser as the only pump and signal generation source. The OPCPA system operates at 10 kHz with a single pulse energy of up to 2.7 mJ and pulse duration of 30 fs. The maximum average output power of 27 W sets a new record for an OPCPA system in the 2 µm wavelength region. The soft X-ray continuum generated through high harmonic generation with this driver laser can extend to around 0.55 keV, thus covering the entire water window (284 eV - 543 eV). With a repetition rate still enabling pump-probe experiments on solid samples, the system can be used for many applications.

2.
Rev Sci Instrum ; 90(4): 043111, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042967

RESUMO

A sub-pixel 16 bit charge coupled device camera featuring superresolution for the soft X-ray regime is presented. Superresolution images (SRIs) are reconstructed from a set of 4 × 4 individual low-resolution images that are recorded for different sub-pixel shifts of the detector. SRIs have a 1.3 times higher resolution than individual low-resolution images which is close to the maximum achievable enhancement factor of about 1.5 in the X-ray regime under ideal conditions. To characterize this camera and demonstrate its potential, an X-ray microscope setup is used to image different objects at different photon energies.

3.
Sci Rep ; 7: 44030, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290479

RESUMO

In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036407, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18517533

RESUMO

The spatial dependence of proton acceleration at the rear surface of a target that is irradiated by high-contrast and ultraintense laser pulses is investigated. Lateral movement of the proton acceleration position at the rear surface is observed; this is tested by a two-pinhole measurement which results in the observation of protons with a narrow energy band. This drifting is only observed when relativistic-intensity laser pulses irradiate targets with a small preplasma at oblique incidence, as is confirmed by two-dimensional particle-in-cell simulations. This scenario of proton acceleration by the fast-moving sheath field leads to energy selection of the accelerated protons as a function of observing position.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 2): 056604, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17280003

RESUMO

We analyze pulse self-compression in femtosecond filaments, both experimentally and numerically. We experimentally demonstrate the compression of 45 fs pulses down to a duration of 7.4 fs at millijoule pulse energies. This sixfold compression in a self-generated filament does not require any means for dispersion compensation and is highly efficient. We compare our results to numerical simulations, providing a complete propagation model that accounts for full dispersion, pressure variations, Kerr nonlinearity and plasma generation in multiphoton and tunnel regimes. The equations are numerically integrated and allow for a quantitative comparison with the experiment. Our experiments and numerical simulations reveal a characteristic spectrotemporal structure of the self-compressed pulses, consisting of a compressible blue wing and an incompressible red pedestal. We explain the underlying mechanism that leads to this structure and examine the scalability of filament self-compression with respect to pulse energy and gas pressure.

6.
Opt Lett ; 30(12): 1572-4, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16007811

RESUMO

Investigations of plasma produced by a boron nitride capillary discharge irradiated with a guided 20-TW Ti: sapphire laser pulse at a peak intensity of 4 x 10(18) W/cm2 are presented. The guided laser radiation in the plasma channel generated He-like ions that, subject to suitable plasma temperature, recombined into Li-like nitrogen ions. Intense radiation at a wavelength of 24.77 nm was observed, indicating possible lasing at the 3d(5/2) - 2p(3/2) transition in Li-like nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA