Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Adv Colloid Interface Sci ; 329: 103187, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38788307

RESUMO

The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.

2.
Langmuir ; 40(15): 7896-7906, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578930

RESUMO

Polar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear. It has been suggested that surface-induced molecular water structuring is responsible for the hydration repulsion, but a quantitative proof of this water-structuring hypothesis is missing. To gain an understanding of the mechanism causing hydration repulsion, we perform molecular simulations of different planar polar surfaces in water. Our simulated hydration forces between phospholipid bilayers agree perfectly with experiments, validating the simulation model and methods. For the comparison with theory, it is important to split the simulated total surface interaction force into a direct contribution from surface-surface molecular interactions and an indirect water-mediated contribution. We find the indirect hydration force and the structural water-ordering profiles from the simulations to be in perfect agreement with the predictions from theoretical models that account for the surface-induced water ordering, which strongly supports the water-structuring hypothesis for the hydration force. However, the comparison between the simulations for polar surfaces with different headgroup architectures reveals significantly different decay lengths of the indirect water-mediated hydration-force, which for laterally homogeneous water structuring would imply different bulk-water properties. We conclude that laterally inhomogeneous water ordering, induced by laterally inhomogeneous surface structures, shapes the hydration repulsion between polar surfaces in a decisive manner. Thus, the indirect water-mediated part of the hydration repulsion is caused by surface-induced water structuring but is surface-specific and thus nonuniversal.

3.
Langmuir ; 40(13): 6949-6961, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502024

RESUMO

Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.

4.
J Phys Chem B ; 128(11): 2821-2830, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38471121

RESUMO

The effect of the degree of isotopic substitution of the aqueous medium on the adsorption kinetics and the surface dilational rheological behavior at the water/air interface of the globular protein ß-lactoglobulin was investigated. Aqueous solutions with fixed concentrations of 1 µM protein and 10 mM hydrogenous buffer with controlled pH 7 were prepared in H2O, D2O, and an isotopic mixture of 8.1% v/v D2O in H2O (called air contrast matched water, ACMW). Using a bubble shape analysis tensiometer, we obtained various experimental dependencies of the dilational viscoelasticity modulus E as a function of the dynamic surface pressure and of the frequency and amplitude of bubble surface area oscillations, either in the course of adsorption or after having reached a steady state. In general, the results revealed virtually no effect from substituting H2O by ACMW but distinct albeit relatively weak effects for intermediate adsorption times for D2O as the aqueous phase. In the final stage of adsorption, established after around 10 h, the equilibrium adsorption and the dilational rheological behavior of all protein layers under investigation are only very weakly affected by the presence of D2O. The obtained results help to design experimental protocols for protein adsorption studies, for example, by neutron reflectivity.

5.
Soft Matter ; 20(9): 2113-2125, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349522

RESUMO

Glycolipids have a considerable influence on the interaction between adjacent biomembranes and can promote membrane adhesion trough favorable sugar-sugar "bonds" even at low glycolipid fractions. Here, in order to obtain structural insights into this phenomenon, we utilize neutron reflectometry in combination with a floating lipid bilayer architecture that brings two glycolipid-loaded lipid bilayers to close proximity. We find that selected glycolipids with di-, or oligosaccharide headgroups affect the inter-bilayer water layer thickness and appear to contribute to the stability of the double-bilayer architecture by promoting adhesion of adjacent bilayers even against induced electrostatic repulsion. However, we do not observe any redistribution of glycolipids that would maximize the density of sugar-sugar contacts. Our results point towards possible strategies for the investigation of interactions between cell surfaces involving specific protein-protein, lipid-lipid, or protein-lipid binding.


Assuntos
Glicolipídeos , Bicamadas Lipídicas , Glicolipídeos/química , Bicamadas Lipídicas/química , Carboidratos , Proteínas , Açúcares
6.
J Sci Food Agric ; 104(5): 2928-2936, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38029349

RESUMO

BACKGROUND: The biocompatible amphiphilic silk fibroin, extracted from domesticated silkworms, can adsorb at the oil-water interface and form elastic interfacial layers. In this study, three surfactants (cationic cetyltrimethylammonium bromide, the nonionic polyoxyethylene sorbitan monolaurate, and the anionic sodium dodecyl sulfate) were selected to investigate, through interfacial shear rheology, the influences of surfactants on the interfacial viscoelasticity and stability of silk fibroin at the interfaces between water and two different oils. RESULTS: The presence of surfactant prolongs the equilibration time and enhances the interfacial elastic modulus and toughness of the interfacial silk fibroin layers, especially at the nonpolar dodecane-water interface. However, when the surfactant exceeds a critical concentration, the shear modulus and stability of interfacial silk fibroin layers begin to decrease due to the competitive adsorption of surfactant molecules and the weakening of the protein network. Owing to electrostatic interactions, the ionic surfactants cetyltrimethylammonium bromide and sodium dodecyl sulfate can form more hydrophobic complexes with silk fibroin, which results in higher shear moduli than for silk fibroin and silk fibroin-polyoxyethylene sorbitan monolaurate mixture. CONCLUSION: Both the surfactant type and oil polarity play important roles in the adsorption, shear viscoelasticity, and stability of silk fibroin at the oil-water interface. Enhanced interactions between a silk fibroin-surfactant mixture and the oil phase delay the equilibration of the adsorption layers but strengthen the stability of interfacial layers. © 2023 Society of Chemical Industry.


Assuntos
Fibroínas , Tensoativos , Tensoativos/química , Fibroínas/química , Dodecilsulfato de Sódio , Cetrimônio , Polissorbatos , Água/química , Óleos/química
7.
J Chem Theory Comput ; 20(4): 1568-1578, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37216476

RESUMO

Surfactants play essential roles in many commonplace applications and industrial processes. Although significant progress has been made over the past decades with regard to model-based predictions of the behavior of surfactants, important challenges have remained. Notably, the characteristic time scales of surfactant exchange among micelles, interfaces, and the bulk solution typically exceed the time scales currently accessible with atomistic molecular dynamics (MD) simulations. Here, we circumvent this problem by introducing a framework that combines the general thermodynamic principles of self-assembly and interfacial adsorption with atomistic MD simulations. This approach provides a full thermodynamic description based on equal chemical potentials and connects the surfactant bulk concentration, the experimental control parameter, with the surfactant surface density, the suitable control parameter in MD simulations. Self-consistency is demonstrated for the nonionic surfactant C12EO6 (hexaethylene glycol monododecyl ether) at an alkane/water interface, for which the adsorption and pressure isotherms are computed. The agreement between the simulation results and experiments is semiquantitative. A detailed analysis reveals that the used atomistic model captures well the interactions between surfactants at the interface but less so their adsorption affinities to the interface and incorporation into micelles. Based on a comparison with other recent studies that pursued similar modeling challenges, we conclude that the current atomistic models systematically overestimate the surfactant affinities to aggregates, which calls for improved models in the future.

8.
Phys Chem Chem Phys ; 26(2): 713-723, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38100091

RESUMO

Surface phenomena in aqueous environments such as long-range hydrophobic attraction, macromolecular adhesion, and even biofouling are predominantly influenced by a fundamental parameter-the water contact angle. The minimal contact angle required for these and related phenomena to occur has been repeatedly reported to be around 65° and is commonly referred to as the "Berg limit." However, the universality of this specific threshold across diverse contexts has remained puzzling. In this perspective article, we aim to rationalize the reoccurrence of this enigmatic contact angle. We show that the relevant scenarios can be effectively conceptualized as three-phase problems involving the surface of interest, water, and a generic oil-like material that is representative of the nonpolar constituents within interacting entities. Our analysis reveals that attraction and adhesion emerge when substrates display an underwater oleophilic character, corresponding to a "hydrophobicity under oil", which occurs for contact angles above approximately 65°. This streamlined view provides valuable insights into macromolecular interactions and holds implications for technological applications.

9.
BMC Biol ; 21(1): 275, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017456

RESUMO

BACKGROUND: Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS: The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION: The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.


Assuntos
Betaína , Bicamadas Lipídicas , Triglicerídeos , Fosfolipídeos , Sementes , Fosfatos
10.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37861119

RESUMO

The pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful for further predictive modeling of the action of MC3-based lipid nanoparticles.

11.
Nanoscale Adv ; 5(17): 4589-4597, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638167

RESUMO

Synthetic amino lipids, already known as highly efficient gene therapy tool, are used in a novel way to create cross-linked stable one-molecule-thin films envisioned for future (bio)-materials applications. The films are prepared as Langmuir monolayers at the air/water interface and cross-linked 'in situ' via dynamic imine chemistry. The cross-linking process and the film characteristics are monitored by various surface-sensitive techniques such as grazing incidence X-ray diffraction, X-ray reflectivity, and infrared reflection-absorption spectroscopy. After transfer onto carbon grids, the cross-linked films are investigated by transmission and scanning electron microscopy. The obtained micrographs display mechanically self-supported nanosheets with area dimensions over several micrometers and, thus, an undeniable visual proof of successful cross-linking. The cross-linking process at the air/water interface allows to obtain Janus-faced sheets with a hydrophobic side characterized by aliphatic alkyl chains and a hydrophilic side characterized by nucleophilic groups like amines, hydroxyl groups and imine.

12.
J Colloid Interface Sci ; 652(Pt A): 1074-1084, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647716

RESUMO

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of ß-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the ß-lactoglobulin adsorption and its effect on the premix membrane emulsification of ß-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed ß-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of ß-lactoglobulin) and the treatment of the silica surface (hydrophilization). The ß-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of ß-lactoglobulin. Although the conformation of the adsorbed ß-lactoglobulin layer varies with membrane treatment and the solvent properties, the ß-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after ß-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.


Assuntos
Lactoglobulinas , Água , Adsorção , Lactoglobulinas/química , Emulsões/química , Solventes , Água/química
13.
PNAS Nexus ; 2(6): pgad190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383024

RESUMO

Lipid monolayers are ubiquitous in biological systems and have multiple roles in biotechnological applications, such as lipid coatings that enhance colloidal stability or prevent surface fouling. Despite the great technological importance of surface-adsorbed lipid monolayers, the connection between their formation and the chemical characteristics of the underlying surfaces has remained poorly understood. Here, we elucidate the conditions required for stable lipid monolayers nonspecifically adsorbed on solid surfaces in aqueous solutions and water/alcohol mixtures. We use a framework that combines the general thermodynamic principles of monolayer adsorption with fully atomistic molecular dynamics simulations. We find that, very universally, the chief descriptor of adsorption free energy is the wetting contact angle of the solvent on the surface. It turns out that monolayers can form and remain thermodynamically stable only on substrates with contact angles above the adsorption contact angle, θads. Our analysis establishes that θads falls into a narrow range of around 60∘-70∘ in aqueous media and is only weakly dependent on the surface chemistry. Moreover, to a good approximation, θads is roughly determined by the ratio between the surface tensions of hydrocarbons and the solvent. Adding small amounts of alcohol to the aqueous medium lowers θads and thereby facilitates monolayer formation on hydrophilic solid surfaces. At the same time, alcohol addition weakens the adsorption strength on hydrophobic surfaces and results in a slowdown of the adsorption kinetics, which can be useful for the preparation of defect-free monolayers.

14.
J Phys Chem B ; 127(18): 4081-4089, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37127845

RESUMO

Binding forces between biomolecules are ubiquitous in nature but sometimes as weak as a few pico-Newtons (pN). In many cases, the binding partners are attached to biomembranes with the help of a lipid anchor. One important example are glycolipids that promote membrane adhesion through weak carbohydrate-carbohydrate binding between adjacent membranes. Here, we use molecular dynamics (MD) simulations to quantify the forces generated by bonds involving membrane-anchored molecules. We introduce a method in which the protrusion of the lipid anchors from the membrane acts as the force sensor. Our results with two different glycolipids reveal binding forces of up to 20 pN and corroborate the recent notion that carbohydrate-carbohydrate interactions are generic rather than specific.


Assuntos
Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Glicolipídeos , Membranas
15.
Small ; 19(22): e2300516, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828797

RESUMO

For prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio-adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small-angle scattering with neutrons and X-rays. The scattering intensities are successfully described with a three-component model accounting for proteins of two dominant molecular weight fractions and nanoscale globules. In contrast to the previous assumption that high molecular weight proteins-the presumed building blocks of the fiber core-are contained in the nanoglobules, it is found that the majority of slime proteins exist freely in solution. Only less than 10% of the slime proteins are contained in the nanoglobules, necessitating a reassessment of their function in fiber formation. Comparing scattering data of slime re-hydrated with light and heavy water reveals that the majority of lipids in slime are contained in the nanoglobules with homogeneous distribution. Vibrating mechanical impact under exclusion of air neither leads to formation of fibers nor alters the bulk structure of slime significantly, suggesting that interfacial phenomena and directional shearing are required for fiber formation.


Assuntos
Nanoestruturas , Proteínas , Proteínas/química , Espalhamento a Baixo Ângulo , Adesivos/química , Espalhamento de Radiação
16.
Adv Healthc Mater ; 12(9): e2202373, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36541931

RESUMO

Physical forces are important cues in determining the development and the normal function of biological tissues. While forces generated by molecular motors have been widely studied, forces resulting from osmotic gradients have been less considered in this context. A possible reason is the lack of direct in situ measurement methods that can be applied to cell and organ culture systems. Herein, novel kinds of resonance energy transfer (FRET)-based liposomal sensors are developed, so that their sensing range and sensitivity can be adjusted to satisfy physiological osmotic conditions. Several types of sensors are prepared, either based on polyethylene glycol- (PEG)ylated liposomes with steric stabilization and stealth property or on crosslinked liposomes capable of enduring relatively harsh environments for liposomes (e.g., in the presence of biosurfactants). The sensors are demonstrated to be effective in the measurement of osmotic pressures in pre-osteoblastic in vitro cell culture systems by means of FRET microscopy. This development paves the way toward the in situ sensing of osmotic pressures in biological culture systems.


Assuntos
Lipossomos , Polietilenoglicóis , Pressão Osmótica , Biologia
17.
Nanoscale ; 14(40): 15048-15059, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36200471

RESUMO

Lipid bilayers immobilized in planar geometries, such as solid-supported or "floating" bilayers, have enabled detailed studies of biological membranes with numerous experimental techniques, notably X-ray and neutron reflectometry. However, the presence of a solid support also has disadvantages as it complicates the use of spectroscopic techniques as well as surface rheological measurements that would require surface deformations. Here, in order to overcome these limitations, we investigate lipid bilayers adsorbed to inherently soft and experimentally well accessible air/water interfaces that are functionalized with Langmuir monolayers of amphiphiles. The bilayers are characterized with ellipsometry, X-ray scattering, and X-ray fluorescence. Grazing-incidence X-ray diffraction reveals that lipid bilayers in a chain-ordered state can have significantly different structural features than regular Langmuir monolayers of the same composition. Our results suggest that bilayers at air/water interfaces may be well suited for fundamental studies in the field of membrane biophysics.


Assuntos
Bicamadas Lipídicas , Água , Bicamadas Lipídicas/química , Água/química , Membrana Celular/química , Difração de Raios X
18.
Langmuir ; 38(41): 12521-12529, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36209408

RESUMO

Langmuir monolayers of chiral amphiphiles are well-controlled model systems for the investigation of phenomena related to stereochemistry. Here, we have investigated mixed monolayers of one pair of enantiomers (l and d) of the amino-acid-based amphiphile N-stearoyl-threonine. The monolayer characteristics were studied by pressure-area isotherm measurements and grazing incidence X-ray diffraction (GIXD) over a wide range of mixing ratios defined by the d-enantiomer mole fraction xD. While the isotherms provide insights into thermodynamical aspects, such as transition pressure, compression/decompression hysteresis, and preferential homo- and heterochiral interactions, GIXD reveals the molecular structural arrangements on the Ångström scale. Dominant heterochiral interactions in the racemic mixture lead to compound formation and the appearance of a nonchiral rectangular lattice, although the pure enantiomers form a chiral oblique lattice. Miscibility was found to be limited to mixtures with 0.27 ≲ xD ≲ 0.73, as well as to both outer edges (xD ≲ 0.08 and xD ≳ 0.92). Beyond this range, coexistence of oblique and rectangular lattices occurs, as is clearly seen in the GIXD patterns. Based on the results, a complete phase diagram with two eutectic points at xD ≈ 0.25 and xD ≈ 0.75 is proposed. Moreover, N-stearoyl-threonine was found to have a strong tendency to form a hydrogen-bonding network between the headgroups, which promotes superlattice formation.


Assuntos
Hidrogênio , Treonina , Ligação de Hidrogênio , Estereoisomerismo , Difração de Raios X
19.
Phys Chem Chem Phys ; 24(37): 22778-22791, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36111816

RESUMO

In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers. OL is found to have a greater tendency than chain-analogous PEL to form ordered structures and, in contrast to PEL, even a molecular superlattice based on a hydrogen bonding network between the headgroups. This superlattice is virtually electrically uncharged and persists over a wide pH range. Our results indicate that OL and PEL behave very differently in ordered single-component membranes but may behave more similarly in fluid multicomponent membranes.


Assuntos
Bicamadas Lipídicas , Fosfatidiletanolaminas , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipídeos , Ornitina/análogos & derivados , Fosfatidiletanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA