Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37105720

RESUMO

To survive in a complex and changing environment, animals must adapt their behavior. This ability is called behavioral flexibility and is classically evaluated by a reversal learning paradigm. During such a paradigm, the animals adapt their behavior according to a change of the reward contingencies. To study these complex cognitive functions (from outcome evaluation to motor adaptation), we developed a versatile, low-cost, open-source platform, allowing us to investigate the neuronal correlates of behavioral flexibility with 1-photon calcium imaging. This platform consists of FreiBox, a novel low-cost Arduino behavioral setup, as well as further open-source tools, which we developed and integrated into our framework. FreiBox is controlled by a custom Python interface and integrates a new licking sensor (strain gauge lickometer) for controlling spatial licking behavioral tasks. In addition to allowing both discriminative and serial reversal learning, the Arduino can track mouse licking behavior in real time to control task events in a submillisecond timescale. To complete our setup, we also developed and validated an affordable commutator, which is crucial for recording calcium imaging with the Miniscope V4 in freely moving mice. Further, we demonstrated that FreiBox can be associated with 1-photon imaging and other open-source initiatives (e.g., Open Ephys) to form a versatile platform for exploring the neuronal substrates of licking-based behavioral flexibility in mice. The combination of the FreiBox behavioral setup and our low-cost commutator represents a highly competitive and complementary addition to the recently emerging battery of open-source initiatives.


Assuntos
Comportamento Animal , Cálcio , Camundongos , Animais , Comportamento Animal/fisiologia , Cognição , Neurônios/fisiologia , Reversão de Aprendizagem
2.
J Neurosci Methods ; 336: 108636, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081674

RESUMO

BACKGROUND: In accordance with the three R principles of research, animal usage should be limited as much as possible. Especially for the training of entry-level scientists in surgical techniques underlying opto- and electrophysiology, alternative training tools are required before moving on to live animals. We have developed a cost-effective rat brain model for training a wide range of surgical techniques, including, but not limited to optogenetics, electrophysiology, and intracranial pharmacological treatments. RESULTS: Our brain model creates a realistic training experience in animal surgery. The success of the surgeries (e.g. implantation accuracy) is readily assessable in cross sections of the model brain. Moreover, the model allows practicing electrophysiological recordings as well as testing for movement or light related artefacts. COMPARISON WITH EXISTING METHOD(S): The surgery and recording experience in our model closely resembles that in an actual rat in terms of the necessary techniques, considerations and time span. A few differences to an actual rat brain slightly reduce the difficulty in our model compared to a live animal. Thus, entry level scientists can first learn basic techniques in our model before moving on to the slightly more complex procedures in live animals. CONCLUSIONS: Our brain model is a useful training tool to equip scientist who are new in the field of electrophysiology and optogenetic manipulations with a basic skill set before applying it in live animals. It can be adapted to fit the desired training content or even to serve in testing and optimizing new lab equipment for more senior scientists.


Assuntos
Fenômenos Eletrofisiológicos , Optogenética , Animais , Encéfalo/cirurgia , Eletrofisiologia , Movimento , Ratos
3.
Cell Rep ; 29(6): 1645-1659.e9, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693902

RESUMO

Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment.


Assuntos
Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genes cdc , Proteínas de Choque Térmico HSP90/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Sequenciamento de Cromatina por Imunoprecipitação , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Citosol/metabolismo , Bases de Dados Genéticas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Fator C1 de Célula Hospedeira/genética , Humanos , Camundongos , Ligação Proteica , Mapas de Interação de Proteínas , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA